Abstract A precise characterization of moisture source and transport dynamics over the inland margins of monsoonal China is crucial for understanding the climatic significance of precipitation oxygen isotope (δ 18 O p ) variability preserved in the regional proxy archives. Here, we use a general circulation model with an embedded water-tagging module to quantify the role of moisture dynamics on the seasonal to decadal variations of δ 18 O p in northern China. Our data indicate that during the non-monsoon season, the δ 18 O p variability is dominated by the temperature effect. Conversely, in the summer monsoon season, the moisture contributions from the low-latitude land areas (LLA), the Pacific Ocean (PO), and the North Indian Ocean (NIO) override the temperature effect and influence the summer δ 18 O p . Intensified upstream convection along the NIO moisture transport pathway results in a more negative summer δ 18 O p compared to moisture transported from the PO and LLA regions. Our analysis shows a decadal shift in summer δ 18 O p around the mid-1980s, marking changes in the relative contribution of oceanic moisture from PO and NIO in response to changes in the atmospheric circulation patterns influenced by the Pacific Decadal Oscillation. We suggest that such decadal-scale δ 18 O p variability can be recorded in the natural archives from the region, which can provide valuable insights into understanding past climate variability.
Abstract. This paper presents the first results of the atmospheric measurements of trace gases and aerosols at three surface sites in and around Beijing before and during the 2008 Olympics. We focus on secondary pollutants including ozone, fine sulfate and nitrate, and the contribution of regional sources in summer 2008. The results reveal different responses of secondary pollutants to the control measures from primary pollutants. Ambient concentrations of vehicle-related nitrogen oxides (NOx) and volatile organic compounds (VOCs) at an urban site dropped by 25% and 20–45% in the first two weeks after full control was put in place, but the levels of ozone, sulfate and nitrate in PM2.5 increased by 16%, 64%, 37%, respectively, compared to the period prior to the full control; wind data and back trajectories indicated the contribution of regional pollution from the North China Plain. Air quality (for both primary and secondary pollutants) improved significantly during the Games, which were also associated with the changes in weather conditions (prolonged rainfall, decreased temperature, and more frequent air masses from clean regions). A comparison of the ozone data at three sites on eight ozone-pollution days, when the air masses were from the southeast-south-southwest sector, showed that regional pollution sources contributed 34%–88% to the peak ozone concentrations in urban Beijing. Ozone production efficiencies at two sites were low (~3 ppbv/ppbv), indicating that ozone formation was being controlled by VOCs. Compared with data collected in 2005 at a downwind site, the concentrations of ozone, sulfur dioxide (SO2), total sulfur (SO2+PM2.5 sulfate), carbon monoxide (CO), reactive aromatics (toluene and xylenes) sharply decreased (by 8–64%) in 2008, but no significant changes were observed for the concentrations of PM2.5, fine sulfate, total odd reactive nitrogen (NOy), and longer lived alkanes and benzene. We suggest that these results indicate the success of the government's efforts in reducing emissions of SO2, CO, and VOCs in Beijing. However, further control of regional emissions is needed for significant reductions of ozone and fine particulate pollution in Beijing.