Summary Improving cold tolerance at the flowering stage (CTF) in rice is crucial for minimising yield loss, making the identification and application of cold‐tolerant genes and QTLs imperative for effective molecular breeding. The long lead time, dependence on cold treatment conditions, and the inherent complexity of the trait make studying the genetic basis of CTF in rice challenging. To date, the fine‐mapping or cloning of QTLs specific to CTF has not yet been achieved. In this study, single segment substitution lines (SSSLs) were constructed using HJX74 as the recipient and IR58025B, known for good CTF, as the donor. This approach led to the identification of two cold tolerance QTLs, qCTF3 and qCTF6 , in rice. qCTF6 has promising breeding potential. Further, we identified the causal gene CTF1 underlying qCTF6 through map‐based cloning . CTF1 which encodes a conserved putative protein, has two SNPs within its coding sequence that influence CTF in rice. Additionally, genetic variations in the promoter of CTF1 also contributes to CTF. Thirteen variant sites of CTF1 in the four cold tolerance SSSLs are consistent with the IR58025B. Moreover, we analysed 307 accessions to characterise haplotypes based on the 13 variation sites, identifying five distinct haplotypes. The selection and evolutionary analysis indicate that the cold‐tolerant haplotype of CTF1 is a newly generated mutation that has undergone selection in japonica during domestication. This study not only provides a novel favourable gene for molecular breeding of CTF but also highlights the potential of CTF1 in advancing rice breeding.
Abstract Knowledge of chromosome-length haplotypes will not only advance our understanding of the relationship between DNA and phenotypes, but also promote a variety of genetic applications. Here we present Hapi , an innovative method for chromosomal haplotype inference using only 3 to 5 gametes. Hapi outperformed all existing haploid-based phasing methods in terms of accuracy, reliability, and cost efficiency in both simulated and real gamete datasets. This highly cost-effective phasing method will make large-scale haplotype studies feasible to facilitate human disease studies and plant/animal breeding. In addition, Hapi can detect meiotic crossovers in gametes, which has promise in the diagnosis of abnormal recombination activity in human reproductive cells.
Kernel size and plant architecture play important roles in kernel yield in rice. Cloning and functional study of genes related to kernel size and plant architecture are of great significance for breeding high-yield rice. Using the single-segment substitution lines which developed with Oryza barthii as a donor parent and an elite indica cultivar Huajingxian74 (HJX74) as a recipient parent, we identified a novel QTL (quantitative trait locus), named qGL3.4, which controls kernel size and plant architecture. Compared with HJX74, the kernel length, kernel width, 1000-kernel weight, panicle length, kernels per plant, primary branches, yield per plant, and plant height of near isogenic line-qGL3.4 (NIL-qGL3.4) are increased, whereas the panicles per plant and secondary branches per panicle of NIL-qGL3.4 are comparable to those of HJX74. qGL3.4 was narrowed to a 239.18 kb interval on chromosome 3. Cell analysis showed that NIL-qGL3.4 controlled kernel size by regulating cell growth. qGL3.4 controls kernel size at least in part through regulating the transcription levels of EXPANSINS, GS3, GL3.1, PGL1, GL7, OsSPL13 and GS5. These results indicate that qGL3.4 might be beneficial for improving kernel yield and plant architecture in rice breeding.籽粒大小与株型对水稻产量具有重要影响,因此其相关基因克隆与功能研究对培育高产水稻具有重大的意义。本研究从以短舌野生稻为供体、华粳籼74 (HJX74)为受体的染色体单片段代换系(SSSLs)中鉴定到一个新的调控籽粒大小与株型的QTL位点qGL3.4。与对照HJX74相比,近等基因系NIL-qGL3.4的粒长、粒宽、千粒重、穗长、穗粒数、一次枝梗数、单株产量与株高显著增加,而NIL-qGL3.4的分蘖数和二级枝梗数与HJX74对应值无显著差异。通过图位克隆,将qGL3.4定位在第3号染色体239.18 kb区间内。细胞学分析表明,NIL-qGL3.4通过调节颖壳细胞的生长进而调控籽粒的大小。分子机理研究表明,qGL3.4可能通过调控籽粒大小相关基因EXPANSINs、GS3、GL3.1、PGL1、GL7、OsSPL13和GS5的表达进而调控籽粒大小。本研究可能为高产与理想株型的水稻培育提供新的靶标位点。.
DNA 6mA modification, an important newly discovered epigenetic mark, plays a crucial role in organisms and has been attracting more and more attention in recent years. The soybean is economically the most important bean in the world, providing vegetable protein for millions of people. However, the distribution pattern and function of 6mA in soybean are still unknown. In this study, we decoded 6mA modification to single-nucleotide resolution in wild and cultivated soybeans, and compared the 6mA differences between cytoplasmic and nuclear genomes and between wild and cultivated soybeans. The motif of 6mA in the nuclear genome was conserved across the two kinds of soybeans, and ANHGA was the most dominant motif in wild and cultivated soybeans. Genes with 6mA modification in the nucleus had higher expression than those without modification. Interestingly, 6mA distribution patterns in cytoplasm for each soybean were significantly different from those in nucleus, which was reported for the first time in soybean. Our research provides a new insight in the deep analysis of cytoplasmic genomic DNA modification in plants.
Mapping rice cropping areas with optical remote sensing is often a challenge in tropical and subtropical regions because of frequent cloud cover and rainfall during the rice growing season. Synthetic aperture radar (SAR) is a potential alternative for rice mapping because of its all-weather imaging capabilities. The recent Phased Array-type L-band SAR (PALSAR) sensor onboard the Advanced Land Observing Satellite (ALOS) acquires multipolarization and multitemporal images that are highly suitable for rice mapping. In this pilot study, we demonstrate the feasibility of this sensor in mapping the rice planting area in Zhejiang Province, southeast China. High-resolution ALOS/PALSAR images were acquired at three rice growing stages (transplanting, tillering and heading) and were applied in a support vector machine (SVM) classifier to map rice and other land use surfaces. The results show that, based on the 1:10 000 land use/land cover (LULC) survey map, the rice fields can be mapped with a conditional Kappa value of 0.87 and at user's and producer's accuracies of 90% and 76%, respectively. The large commission error primarily came from confusion between rice and dryland crops or orchards because of their similar backscatter amplitudes in the rice growing season. The relatively high rice mapping accuracy in this study indicates that the new ALOS/PALSAR data could provide useful information in rice cropping management in subtropical regions such as southeast China.
Nested association mapping (NAM) has been an invaluable approach for plant genetics community and can dissect the genetic architecture of complex traits. As the most popular NAM analysis strategy, joint multifamily mapping can combine all information from diverse genetic backgrounds and increase population size. However, it is influenced by the genetic heterogeneity of quantitative trait locus (QTL) across various subpopulations. Multi-locus association mapping has been proven to be powerful in many cases of QTL mapping and genome-wide association studies. Therefore, we developed a multi-locus association model of multiple families in the NAM population, which could discriminate the effects of QTLs in all subpopulations. A series of simulations with a real maize NAM genomic data were implemented. The results demonstrated that the new method improves the statistical power in QTL detection and the accuracy in QTL effect estimation. The new approach, along with single-family linkage mapping, was used to identify QTLs for three flowering time traits in the maize NAM population. As a result, most QTLs detected in single family linkage mapping were identified by the new method. In addition, the new method also mapped some new QTLs with small effects, although their functions need to be identified in the future.