The film-forming capability of the host plays a crucial role in effectively forming a light-emitting layer through a solution process in organic light-emitting diodes (OLEDs). In this study, we synthesized two side-chain polymer hosts,
All‐polymer photovoltaics (all‐PPVs) that operate under both indoor and outdoor lighting conditions require active layers with appropriately adjusted optical‐absorption ranges. However, the optical absorption of a conventional donor–acceptor binary blend is restricted to the combined absorption bands of its components. Herein, a new conjugated block copolymer (CBC) acceptor, b ‐PYT, is designed by integrating polymer acceptor blocks of wide and narrow bandgaps in a single structure. Such combination results in the wide absorption range (550–850 nm) of b ‐PYT that matches the emission of both artificial and solar light. The b ‐PYT CBC acceptor is more crystalline than the corresponding random terpolymer, r ‐PYT, owing to improved interactions between its macromolecular acceptor units. Despite exhibiting slightly inferior outdoor performance compared to that of devices using the homopolymer BTTP‐T, the PM6: b ‐PYT‐based devices deliver superior power conversion efficiency (PCE) under indoor light‐emitting diode (LED) light owing to better matched absorption and emission spectra of b ‐PYT and a cold white LED, respectively. Additionally, it is worth highlighting that PM6: b ‐PYT‐based all‐PPVs can maintain approximately 87% of the initial PCE even after 600 min of thermal aging at 150 °C, which demonstrates the superior thermal stability compared with those of all‐PPVs that use traditional binary active layers.
Crosslinkable polymers have attracted tremendous attention in various fields of science and technology, owing to their potential utilization in applications requiring dimensional and morphological stability under thermal and mechanical stress. In this study, random terpolymers were successfully synthesized by introducing thiophene-based monomers bearing vinyl functional groups in the side-chain of the polymer donor (PBDBT-BV20) and polymer acceptor (N2200-TV10) structures. The physical properties of the blend films of PBDBT-BV20 and N2200-TV10 before and after thermal crosslinking were extensively investigated and compared to those of the homogeneous individual polymer films. The results revealed that a network polymer with donor and acceptor polymer chains, which can lock the internal morphology, could be achieved by inducing crosslinking between the vinyl groups in the mixed state of PBDBT-BV20 and N2200-TV10. In addition, the power conversion efficiency (PCE) of the polymer solar cells (PSCs) containing the blend films that were crosslinked by a two-step thermal annealing process was improved. The enhanced PCE could be attributed to the individual crystallization of PBDBT-BV20 and N2200-TV10 in the blend phase at 120 °C and then thermal crosslinking at 140 °C. In addition, the PSCs with the crosslinked blend film exhibited an excellent shelf-life of over 1200 h and a thermally stable PCE. Furthermore, the crosslinked blend film exhibited excellent mechanical stability under bending stress in flexible PSCs using plastic substrates.
Abstract Multiple‐resonance thermally activated delayed fluorescence (MR‐TADF) emitters exhibit enormous potential for use in organic light‐emitting diodes (OLEDs), owing to their exceptional external quantum efficiencies (EQEs) and narrowband emission spectra. However, planar MR‐TADF emitters often suffer from aggregation‐caused quenching (ACQ) and spectral broadening at high doping concentrations because of strong interchromophore π–π interactions. A method of sterically encapsulating the planar MR skeleton with four bulky 9‐phenyl‐fluorene (Fl) units is devised, resulting in the development of a bright bluish‐green emitter (4FlCzBN). This steric shielding effectively reduces intermolecular interactions, suppresses ACQ, and improves solubility. Consequently, by utilizing 4FlCzBN as a doping‐insensitive MR emitter, solution‐processed OLEDs are fabricated with doping concentrations of 2–16 wt.%, and they show EQEs of 10.1–10.9% with a bandwidth of 28–30 nm. Furthermore, a TADF‐sensitizer‐based device using 4FlCzBN demonstrates a significantly reduced efficiency roll‐off while achieving an EQE of 12.2%. This is a remarkable improvement that overcomes the disadvantages that are difficult to achieve in previously reported MR‐TADF OLEDs. The current work provides valuable insights into the design of efficient MR‐TADF emitters with minimized aggregation and reduced efficiency roll‐off for solution processing.
The photophysical properties of donor (D)-acceptor (A) polymers were studied by designing two types of polymers, (D-σ-A)n and (D-π-A)n , with non-conjugated alkyl (sp3) and π-conjugated (sp2) linkers using π-extended donor and acceptor monomers that exhibit planar A-D-A structures. The non-conjugated alkyl linker provides structural flexibility to the (D-σ-A)n polymers, while the π-conjugated linker retains the rigid structure of the (D-π-A)n polymers. Photoinduced energy transfer occurs from the large donor to acceptor units in both polymers. However, the photoinduced energy transfer dynamics are found to be dependent on the conformation of the polymers, where the difference is dictated by the types of linkers between the donor and acceptor units. In solution, intramolecular energy transfer is relatively favorable for the (D-σ-A)n polymers with flexible linkers that allow the donor and acceptor units to be proximally located in the polymers. On the other hand, intermolecular (or interchain) energy transfer is dominant in the two polymer films because the π-extended donor and acceptor units in polymers are closely packed. The structural flexibility of the linkers between the donor and acceptor repeating units in the polymers affects the efficiency of energy transfer between the donor and acceptor units and the overall photophysical properties of the polymers.
Prostate cancer (PCa) progressed to castration resistance (CRPC) is a fatal disease. CRPC tumors develop resistance to new-generation anti-androgen enzalutamide through lineage plasticity, characterized by epithelial-mesenchymal transition (EMT) and basal-like phenotype. FOXA1 is a transcription factor essential for epithelial lineage differentiation. Here, we demonstrate that FOXA1 loss leads to remarkable up-regulation of transforming growth factor beta 3 (TGFB3), which encodes a ligand of TGF-β pathway. Mechanistically, this is due to genomic occupancy of FOXA1 on an upstream enhancer of TGFB3 gene to directly inhibit its transcription. Functionally, FOXA1 down-regulation induces TGF-β signaling, EMT, and cell motility, which is effectively blocked by TGF-β receptor I inhibitor Galunisertib (LY2157299). Tissue microarray analysis confirmed reduced levels of FOXA1 protein and a concordant increase in TGF-β signaling, indicated by SMAD2 phosphorylation, in CRPC as compared to primary tumors. Importantly, combinatorial LY2157299 treatment sensitized PCa cells to enzalutamide, leading to synergistic effects in inhibiting cell invasion in vitro and xenograft CRPC tumor growth and metastasis in vivo. Therefore, our study establishes FOXA1 as an important regulator of lineage plasticity mediated in part by TGF-β signaling and supports a novel therapeutic strategy to control lineage switching and potentially extend clinical response to antiandrogen therapies.
Abstract Ultra‐deep‐blue aggregation‐induced delayed fluorescence (AIDF) emitters (TB‐tCz and TB‐tPCz) bearing organoboron‐based cores as acceptors and 3,6‐substituted carbazoles as donors are presented. The thermally activated delayed fluorescence (TADF) properties of the two emitters are confirmed by theoretical calculations and time‐resolved photoluminescence experiments. TB‐tCz and TB‐tPCz exhibit fast reverse intersystem crossing rate constants owing to efficient spin–orbit coupling between the singlet and triplet states. When applied in solution‐processed organic light‐emitting diodes (OLEDs), the TB‐tCz‐ and TB‐tPCz‐based nondoped devices exhibit ultra‐deep‐blue emissions of 416–428 nm and high color purity owing to their narrow bandwidths of 42.2–44.4 nm, corresponding to the Commission International de l´Eclairage color coordinates of ( x = 0.16–0.17, y = 0.05–0.06). They show a maximum external quantum efficiency (EQE max ) of 8.21% and 15.8%, respectively, exhibiting an unprecedented high performance in solution‐processed deep‐blue TADF‐OLEDs. Furthermore, both emitters exhibit excellent device performances (EQE max = 14.1–15.9%) and color purity in solution‐processed doped OLEDs. The current study provides an AIDF emitter design strategy to implement high‐efficiency deep‐blue OLEDs in the future.
This study demonstrated the use of a thermally crosslinked polyimide (PI) for the liquid crystal (LC) alignment layer of an LC display (LCD) cell. Polyamic acid was prepared using 4,4'-oxydianiline (ODA) and 4,4'-(hexafluoroisopropylidene) diphthalic anhydride (6FDA). The 6FDA-ODA-based polyimide (PI) prepared by the thermal cyclic dehydration of the polyamic acid (PAA) was soluble in various polar solvents. After forming a thin film by mixing trifunctional epoxide [4-(oxiran-2-ylmethoxy)-N,N-bis(oxiran-2-ylmethyl)aniline] with the 6FDA-ODA-based PAA, it was confirmed that thermal curing at -110 °C caused an epoxy ring opening reaction, which could result in the formation of a networked polyimide not soluble in tetrahydrofuran. The crosslinked PI film showed a higher rigidity than the neat PI films, as measured by the elastic modulus. Furthermore, based on a dynamic mechanical analysis of the neat PI and crosslinked PI films, the glass transition temperatures (T