The hexametric T7 helicase (gp4) adopts a spiral lock-washer form and encircles a coil-like DNA (tracking) strand with two nucleotides bound to each subunit. However, the chemo-mechanical coupling mechanism in unwinding has yet to be elucidated. Here, we utilized nanotensioner-enhanced Förster resonance energy transfer with one nucleotide precision to investigate gp4-induced unwinding of DNA that contains an abasic lesion. We observed that the DNA unwinding activity of gp4 is hindered but not completely blocked by abasic lesions. Gp4 moves back and forth repeatedly when it encounters an abasic lesion, whereas it steps back only occasionally when it unwinds normal DNA. We further observed that gp4 translocates on the tracking strand in step sizes of one to four nucleotides. We propose that a hypothetical intermediate conformation of the gp4-DNA complex during DNA unwinding can help explain how gp4 molecules pass lesions, providing insights into the unwinding dynamics of gp4.
Abasic site as a common DNA lesion blocks DNA replication and is highly mutagenic. Protein interactions in T7 DNA replisome facilitate DNA replication and translesion DNA synthesis. However, bypass of an abasic site by T7 DNA replisome has never been investigated. In this work, we used T7 DNA replisome and T7 DNA polymerase alone as two models to study DNA replication on encountering an abasic site. Relative to unmodified DNA, abasic site strongly inhibited primer extension and completely blocked strand-displacement DNA synthesis, due to the decreased fraction of enzyme-DNA productive complex and the reduced average extension rates. Moreover, abasic site at DNA fork inhibited the binding of DNA polymerase or helicase onto fork and the binding between polymerase and helicase at fork. Notably and unexpectedly, we found DNA polymerase alone bypassed an abasic site on primer/template (P/T) substrate more efficiently than did polymerase and helicase complex bypass it at fork. The presence of gp2.5 further inhibited the abasic site bypass at DNA fork. Kinetic analysis showed that this inhibition at fork relative to that on P/T was due to the decreased fraction of productive complex instead of the average extension rates. Therefore, we found that protein interactions in T7 DNA replisome inhibited the bypass of DNA lesion, different from all the traditional concept that protein interactions or accessory proteins always promote DNA replication and DNA damage bypass, providing new insights in translesion DNA synthesis performed by DNA replisome.
Abstract The DNA replisome inevitably encounters DNA damage during DNA replication. The T7 DNA replisome contains a DNA polymerase (gp5), the processivity factor thioredoxin (trx), a helicase‐primase (gp4), and a ssDNA‐binding protein (gp2.5). T7 protein interactions mediate this DNA replication. However, whether the protein interactions could promote DNA damage bypass is still little addressed. In this study, we investigated strand‐displacement DNA synthesis past 8‐oxoG or O 6 ‐MeG lesions at the synthetic DNA fork by the T7 DNA replisome. DNA damage does not obviously affect the binding affinities between helicase, polymerase, and DNA fork. Relative to unmodified G, both 8‐oxoG and O 6 ‐MeG—as well as GC‐rich template sequence clusters—inhibit strand‐displacement DNA synthesis and produce partial extension products. Relative to the gp4 ΔC‐tail, gp4 promotes DNA damage bypass. The presence of gp2.5 also promotes it. Thus, the interactions of polymerase with helicase and ssDNA‐binding protein facilitate DNA damage bypass. Accessory proteins in other complicated DNA replisomes also facilitate bypassing DNA damage in similar manner. This work provides new mechanistic information relating to DNA damage bypass by the DNA replisome.
Pseudomonas aeruginosa is an opportunistic pathogen with a relatively large genome, and has been shown to routinely lose genomic fragments during environmental selection. However, the underlying molecular mechanisms that promote chromosomal deletion are still poorly understood. In a recent study, we showed that by deleting a large chromosomal fragment containing two closely situated genes, hmgA and galU, P. aeruginosa was able to form 'brown mutants', bacteriophage (phage) resistant mutants with a brown color phenotype. In this study, we show that the brown mutants occur at a frequency of 227 ± 87 × 10-8 and contain a deletion ranging from ∼200 to ∼620 kb. By screening P. aeruginosa transposon mutants, we identified mutL gene whose mutation constrained the emergence of phage-resistant brown mutants. Moreover, the P. aeruginosa MutL (PaMutL) nicking activity can result in DNA double strand break (DSB), which is then repaired by non-homologous end joining (NHEJ), leading to chromosomal deletions. Thus, we reported a noncanonical function of PaMutL that promotes chromosomal deletions through NHEJ to prevent phage predation.
The abasic site is one the most common DNA lesions formed in cells; it induces a severe blockage of DNA replication and is highly mutagenic. We continue to use Gp90 exo-, the sole DNA polymerase from Pseudomonas aeruginosa phage PaP1, to study DNA replication upon encountering an abasic site lesion. Gp90 exo- can incorporate dNTPs opposite the abasic site, but extension past this site is extremely slow. Among the four dNTPs, dATP is preferentially incorporated opposite the abasic site, consistent with the A-rule. The incorporation is independent of the identity of the nucleotide 5' of the abasic site. The incorporation of dATP opposite the abasic site occurs by direct incorporation of dNTP opposite the abasic site without a -1 frameshift deletion. Extension from an A:abasic site pair by Gp90 exo- is slightly unfavorable relative to those from other abasic site pairs. Incorporation of dATP opposite the abasic site is preferential and shows a biphasic shape, indicating that this incorporation is much faster than the subsequent dissociation of the polymerase from DNA. The template sequence does not affect the dATP incorporation priority, burst amplitude, burst rate, or dATP dissociation constant. Surface plasmon resonance shows that the presence of an abasic site in the template weakens the binding affinity of Gp90 exo- to DNA in a binary or ternary complex in the presence of any one kind of dNTP. This study reveals that Gp90 exo- preferentially inserts A opposite an abasic site via the A-rule, like other DNA polymerases (e.g., Pol θ, KlenTaq, KF exo-, Pols α, δ/PCNA, and Thermococcus litoralis Pol Vent (exo-)), providing further insight into DNA replication mediated by P. aeruginosa phage PaP1 upon encountering an abasic site lesion.