Abstract Background: X-linked Charcot-Marie-Tooth type 1 disease has been associated with 280 mutations in the GJB1 [gap junction protein, beta 1, 32kDa (connexin 32, Charcot-Marie-Tooth neuropathy, X-linked)] gene. High-resolution melting analysis with an automated instrument can be used to scan DNA for alterations, but its use in X-linked disorders has not been described. Methods: A 96-well LightScanner for high resolution melting analysis was used to scan amplicons of the GJB1 gene. All mutations reported in this study had been confirmed previously by sequence analysis. DNA samples were amplified with the double-stranded DNA-binding dye LC Green Plus. Melting curves were analyzed as fluorescence difference plots. The shift and curve shapes of melting profiles were used to distinguish controls from patient samples. Results: The method detected each of the 23 mutations used in this study. Eighteen known mutations provided validation of the high-resolution melting method and a further 5 mutations were identified in a blind study. Altered fluorescence difference curves for all the mutations were easily distinguished from the wild-type melting profile. Conclusion: High-resolution melting analysis is a simple, sensitive, and cost-efficient alternative method to scan for gene mutations in the GJB1 gene. The technology has the potential to reduce sequencing burden and would be suitable for mutation screening of exons of large multiexon genes that have been discovered to be associated with Charcot Marie Tooth neuropathy.
To describe in detail the clinical profile of Charcot-Marie-Tooth disease subtype 3 (CMTX3) to aid appropriate genetic testing and rehabilitative therapy.We reviewed the clinical and neurophysiologic profile and CMT Pediatric Scale (CMTPedS) assessments of 11 children with CMTX3.Compared with the more common forms of CMT, CMT1A and CMTX, CMTX3 was characterized by early onset with early and progressive hand weakness. Most affected children were symptomatic within the first 2 years of life. The most common presentation was foot deformity in the first year of life. CMTPedS analysis in these children revealed that CMTX3 progressed more rapidly (4.3 ± 4.1 points over 2 years, n = 7) than CMT1A and CMTX1. Grip strength in affected boys was 2 SDs below age- and sex-matched normative reference values (z score -2.05 ± 1.32) in the second decade of life. The most severely affected individual was wheelchair bound at 14 years of age, and 2 individuals had no movement in the small muscles of the hand in the second decade of life. Nerve conduction studies showed a demyelinating sensorimotor neuropathy with motor conduction velocity ≤23 m/s.CMTX3 had an earlier onset, severe hand weakness, and more rapidly progressive disability compared to the more common forms of CMT. Understanding the unique phenotype of CMTX3 is essential for directing genetic testing because the CMTX3 insertion will not be seen on a routine microarray or neuromuscular gene panel. Early diagnosis will enable rehabilitation to be started early in this rapidly progressive neuropathy.
Loss-of-function mutations in the Src homology 3 (SH3) domain and tetratricopeptide repeats 2 (SH3TC2) gene cause autosomal recessive demyelinating Charcot–Marie–Tooth neuropathy. The SH3TC2 protein has been implicated in promyelination signaling through axonal neuregulin-1 and the ERBB2 Schwann cell receptor. However, little is known about the transcriptional regulation of the SH3TC2 gene. We performed computational and functional analyses that revealed two cis-acting regulatory elements at SH3TC2—one at the promoter and one ∼150 kb downstream of the transcription start site. Both elements direct reporter gene expression in Schwann cells and are responsive to the transcription factor SOX10, which is essential for peripheral nervous system myelination. The downstream enhancer harbors a single-nucleotide polymorphism (SNP) that causes an ∼80% reduction in enhancer activity. The SNP resides directly within a predicted binding site for the transcription factor cAMP response element binding protein (CREB), and we demonstrate that this regulatory element binds to CREB and is activated by CREB expression. Finally, forskolin induces Sh3tc2 expression in rat primary Schwann cells, indicating that SH3TC2 is a CREB target gene. These findings prompted us to determine if SNP genotypes at SH3TC2 are associated with differential phenotypes in the most common demyelinating peripheral neuropathy, CMT1A. Interestingly, this revealed several associations between SNP alleles and disease severity. In summary, our data indicate that SH3TC2 is regulated by the transcription factors CREB and SOX10, define a regulatory SNP at this disease-associated locus and reveal SH3TC2 as a candidate modifier locus of CMT disease phenotypes.
With the advent of whole exome sequencing, cases where no pathogenic coding mutations can be found are increasingly being observed in many diseases. In two large, distantly-related families that mapped to the Charcot-Marie-Tooth neuropathy CMTX3 locus at chromosome Xq26.3-q27.3, all coding mutations were excluded. Using whole genome sequencing we found a large DNA interchromosomal insertion within the CMTX3 locus. The 78 kb insertion originates from chromosome 8q24.3, segregates fully with the disease in the two families, and is absent from the general population as well as 627 neurologically normal chromosomes from in-house controls. Large insertions into chromosome Xq27.1 are known to cause a range of diseases and this is the first neuropathy phenotype caused by an interchromosomal insertion at this locus. The CMTX3 insertion represents an understudied pathogenic structural variation mechanism for inherited peripheral neuropathies. Our finding highlights the importance of considering all structural variation types when studying unsolved inherited peripheral neuropathy cases with no pathogenic coding mutations.
Abstract Inherited peripheral neuropathies ( IPN s) are a group of related diseases primarily affecting the peripheral motor and sensory neurons. They include the hereditary sensory neuropathies ( HSN ), hereditary motor neuropathies ( HMN ), and Charcot‐Marie‐Tooth disease ( CMT ). Using whole‐exome sequencing ( WES ) to achieve a genetic diagnosis is particularly suited to IPN s, where over 80 genes are involved with weak genotype–phenotype correlations beyond the most common genes. We performed WES for 110 index patients with IPN where the genetic cause was undetermined after previous screening for mutations in common genes selected by phenotype and mode of inheritance. We identified 41 missense sequence variants in the known IPN genes in our cohort of 110 index patients. Nine variants (8%), identified in the genes MFN 2 , GJB 1 , BSCL 2, and SETX , are previously reported mutations and considered to be pathogenic in these families. Twelve novel variants (11%) in the genes NEFL , TRPV 4 , KIF 1B , BICD 2 , and SETX are implicated in the disease but require further evidence of pathogenicity. The remaining 20 variants were confirmed as polymorphisms (not causing the disease) and are detailed here to help interpret sequence variants identified in other family studies. Validation using segregation, normal controls, and bioinformatics tools was valuable as supporting evidence for sequence variants implicated in disease. In addition, we identified one SETX sequence variant (c.7640T>C), previously reported as a putative mutation, which we have confirmed as a nonpathogenic rare polymorphism. This study highlights the advantage of using WES for genetic diagnosis in highly heterogeneous diseases such as IPN s and has been particularly powerful in this cohort where genetic diagnosis could not be achieved due to phenotype and mode of inheritance not being previously obvious. However, first tier testing for common genes in clinically well‐defined cases remains important and will account for most positive results.
Charcot-Marie-Tooth (CMT) is a commonly inherited, non-fatal neurodegenerative disorder that affects sensory and motor neurons in patients. More than 90 genes are known to cause axonal and demyelinating forms of CMT. The p.R158H mutation in the pyruvate dehydrogenase kinase 3 (PDK3) gene is the genetic cause for an X linked form of axonal CMT (CMTX6). In vitro studies using patient fibroblasts and iPSC-derived motor neurons have shown that this mutation causes deficits in energy metabolism and mitochondrial function. Animal models that recapitulate pathogenic in vivo events in patients are crucial for investigating mechanisms of axonal degeneration and developing therapies for CMT. We have developed a C. elegans model of CMTX6 by knocking-in the p.R158H mutation in pdhk-2, the ortholog of PDK3. In addition, we have developed animal models overexpressing the wild type and mutant form of human PDK3 specifically in the GABAergic motor neurons of C. elegans. CMTX6 mutants generated in this study exhibit synaptic transmission deficits, locomotion defects and show signs of progressive neurodegeneration. Furthermore, the CMTX6 in vivo models display energy deficits that recapitulate the phenotype observed in patient fibroblasts and iPSC-derived motor neurons. Our CMTX6 animals represent the first in vivo model for this form of CMT and have provided novel insights into the cellular function and metabolic pathways perturbed by the p.R158H mutation, all the while closely replicating the clinical presentation observed in CMTX6 patients.