Sunlight, especially ultraviolet (UV) light-induced hair damage is difficult to avoid during daily life. Concerns about the effects of ultraviolet light on hair are emerging recently. These photochemical changes mainly come from damage to hair proteins and melanins. In this study, we performed experiments to find the patterns of morphological and biochemical changes in UV-light-induced damage to hair by scanning and transmission electron microscopy and hair protein analysis. In our results, morphological damage is significant in UVB-irradiated hairs, while biochemical changes are greater in UVA-irradiated hairs.
Human hairs experience damage and restoration processes consistently because of various external and internal factors. To analyze degrees of hair damage, morphological studies based on electron microscopy (EM), and biochemical studies based on protein and lipid analysis have been proposed and are widely used. Among them, morphological analysis through EM is a fundamental method in understanding the degree of damage and restoration. EM has been very useful in assessing extrinsic and intrinsic damage of hair and various pathological alopecias and also in estimating the efficacy of various kinds of products related to hair care. However, morphological studies have some limitations because they have been described using varying terms and subjective descriptions by different researchers. To establish an objective classification of damaged hair using uniform terms and standardizations. We analyzed over 2000 scanning electron microscopic and transmission electron microscopic findings of normal and of various kinds of damaged hairs to develop a standard grading system for the damaged hairs. After reviewing the results of the electron microscopic pictures, we proposed a standard grading system based on scanning electron microscope and transmission electron microscope. We developed and proposed an easy, objective, and useful standard grading system of damaged hairs.
Various methods have been used to investigate the hair shaft. In the ultrastructural hair field, scanning and transmission electron microscopies are widely used investigative methods, but they have some technical limitations. Recently, X-ray microscopes with sub-micron spatial resolution have emerged as useful instruments because they offer a unique opportunity to observe the interior of an undamaged sample in greater detail. In this report, we examined damaged hair shaft tips using hard X-ray microscopy with a 90 nm spatial resolution. The results of this study suggest that hard X-ray microscopy is an alternative investigative method for hair morphology studies.