Clinical resistance to the HER-2 oncogene-targeting drug trastuzumab (Herceptin) exists, but studies of the resistance mechanisms are hampered by the lack of suitable experimental model systems. We established a carcinoma cell line (designated JIMT-1) from a pleural metastasis of a 62-year old patient with breast cancer who was clinically resistant to trastuzumab. JIMT-1 cells grow as an adherent monolayer and form xenograft tumors in nude mice. JIMT-1 cells have an amplified HER-2 oncogene, which showed no identifiable mutations in its coding sequence. JIMT-1 cells overexpress HER-2 mRNA and protein, and the levels of HER-1, HER-3, and HER-4 mRNA and protein were similar to the trastuzumab-sensitive cell line SKBR-3. The cell line lacks expression of hormone receptors (estrogen receptors and progesterone receptors) and is phenotypically of epithelial progenitor cell origin, as evidenced by immunohistochemical positivity for both cytokeratins 5/14 and 8/18. JIMT-1 cells were insensitive to trastuzumab and another HER-2-inhibiting drug, pertuzumab (2C4), in vitro and in xenograft tumors. Small molecule tyrosine kinase inhibitors Ci1033 and ZD1839 inhibited the JIMT-1 cell growth but to a lesser degree than in trastuzumab-sensitive BT-474 cells. The lack of growth inhibition was rationalized by the unaltered Akt phosphorylation in JIMT-1 cells. Erk1/2 phosphorylation was slightly reduced but still evident in JIMT-1 cells. We conclude that the JIMT-1 cell line provides a valuable experimental model for studies of new trastuzumab-resistance mechanisms.
<div>Abstract<p>Extracellular signal-regulated kinase (ERK)/mitogen-activated protein kinase pathway activity is regulated by the antagonist function of activating kinases and inactivating protein phosphatases. Sustained ERK pathway activity is commonly observed in human malignancies; however, the mechanisms by which the pathway is protected from phosphatase-mediated inactivation in the tumor tissue remain obscure. Here, we show that methylesterase PME-1–mediated inhibition of the protein phosphatase 2A promotes basal ERK pathway activity and is required for efficient growth factor response. Mechanistically, PME-1 is shown to support ERK pathway signaling upstream of Raf, but downstream of growth factor receptors and protein kinase C. In malignant gliomas, PME-1 expression levels correlate with both ERK activity and cell proliferation <i>in vivo</i>. Moreover, PME-1 expression significantly correlates with disease progression in human astrocytic gliomas (<i>n</i> = 222). Together, these observations identify PME-1 expression as one mechanism by which ERK pathway activity is maintained in cancer cells and suggest an important functional role for PME-1 in the disease progression of human astrocytic gliomas. [Cancer Res 2009;69(7):2870–7]</p></div>