Optic Atrophy 1 (OPA1) is a ubiquitously expressed dynamin-like GTPase in the inner mitochondrial membrane. It plays important roles in mitochondrial fusion, apoptosis, reactive oxygen species (ROS) and ATP production. Mutations of OPA1 result in autosomal dominant optic atrophy (DOA). The molecular mechanisms by which link OPA1 mutations and DOA are not fully understood. Recently, we created a Drosophila model to study the pathogenesis of optic atrophy. Heterozygous mutation of Drosophila OPA1 (dOpa1) by P-element insertion results in no obvious morphological abnormalities, whereas homozygous mutation is embryonic lethal. In eye-specific somatic clones, homozygous mutation of dOpa1 causes rough (mispatterning) and glossy (decreased lens deposition) eye phenotypes in adult Drosophila. In humans, heterozygous mutations in OPA1 have been associated with mitochondrial dysfunction, which is predicted to affect multiple organs. In this study, we demonstrated that heterozygous dOpa1 mutation perturbs the visual function and an ERG profile of the Drosophila compound eye. We independently showed that antioxidants delayed the onset of mutant phenotypes in ERG and improved larval vision function in phototaxis assay. Furthermore, heterozygous dOpa1 mutation also caused decreased heart rate, increased heart arrhythmia, and poor tolerance to stress induced by electrical pacing. However, antioxidants had no effects on the dysfunctional heart of heterozygous dOpa1 mutants. Under stress, heterozygous dOpa1 mutations caused reduced escape response, suggesting abnormal function of the skeletal muscles. Our results suggest that heterozygous mutation of dOpa1 shows organ-specific pathogenesis and is associated with multiple organ abnormalities in an age-dependent and organ-specific manner.
Small potential fluctuations ("bumps"), boyh spontaneous and light induced, can be recorded intracellularly from the photoreceptors of Drosophila melanogaster. Statistical analyses of these bumps in the spectral range, 400-600 nm, lead to the following interpretations; (a) For weak stimuli at least, these bumps are the quantal units of the receptor potential. (b) Quanta of various wavelengths, when effectively absorbed, will elicit bumps of the same average size. (c) The spectral sensitivity of the receptor potential appears to have its origin in the relative efficiency of quantum bump production at different wavelengths, and not in the intrinsic difference in the properties of bumps produced by quanta of differenct wavelengths.
Inositol phosphate signaling has been implicated in a wide variety of eukaryotic cellular processes. In Drosophila, the phototransduction cascade is mediated by a phosphoinositide-specific phospholipase C (PLC) encoded by the norpA gene. We have characterized eight norpA mutants by electroretinogram (ERG), Western, molecular, and in vitro PLC activity analyses.ERG responses of the mutants show allele-dependent reductions in amplitudes and retardation in kinetics. The mutants also exhibit allele-dependent reductions in in vitro PLC activity levels and greatly reduced or undetectable NorpA protein levels. Three carry a missense mutation and five carry a nonsense mutation within the norpA coding sequence. In missense mutants, the amino acid substitution occurs at residues highly conserved among PLCs. These substitutions reduce the levels of both the NorpA protein and the PLC activity, with the reduction in PLC activity being greater than can be accounted for simply by the reduction in protein. The effects of the mutations on the amount and activity of the protein are much greater than their effects on the ERG, suggesting an amplification of the transduction signal at the effector (NorpA) protein level.Transgenic flies were generated by germline transformation of a null norpA mutant using a P-element construct containing the wild-type norpA cDNA driven by the ninaE promoter. Transformed flies show rescue of the electrophysiological phenotype in R1-R6 photoreceptors, but not in R7 or R8. The degeneration phenotype of R1-R6 photoreceptors is also rescued. Inositol phosphate signaling has been implicated in a wide variety of eukaryotic cellular processes. In Drosophila, the phototransduction cascade is mediated by a phosphoinositide-specific phospholipase C (PLC) encoded by the norpA gene. We have characterized eight norpA mutants by electroretinogram (ERG), Western, molecular, and in vitro PLC activity analyses. ERG responses of the mutants show allele-dependent reductions in amplitudes and retardation in kinetics. The mutants also exhibit allele-dependent reductions in in vitro PLC activity levels and greatly reduced or undetectable NorpA protein levels. Three carry a missense mutation and five carry a nonsense mutation within the norpA coding sequence. In missense mutants, the amino acid substitution occurs at residues highly conserved among PLCs. These substitutions reduce the levels of both the NorpA protein and the PLC activity, with the reduction in PLC activity being greater than can be accounted for simply by the reduction in protein. The effects of the mutations on the amount and activity of the protein are much greater than their effects on the ERG, suggesting an amplification of the transduction signal at the effector (NorpA) protein level. Transgenic flies were generated by germline transformation of a null norpA mutant using a P-element construct containing the wild-type norpA cDNA driven by the ninaE promoter. Transformed flies show rescue of the electrophysiological phenotype in R1-R6 photoreceptors, but not in R7 or R8. The degeneration phenotype of R1-R6 photoreceptors is also rescued.
The trp and trpl genes are thought to encode two classes of light-activated ion channels in Drosophila. A previous report indicated that a null trpl mutant does not display any mutant phenotype. This lack of detectable mutant phenotypes made it difficult to suggest functions for the transient receptor potential-like (TRPL) channel in photoreceptor responses. Here, the properties of trpl photoreceptor responses were studied by using electroretinogram (ERG) and intracellular recording techniques in combination with light stimuli of relatively long durations. Distinct mutant phenotypes were detectable under these conditions. These consisted of a reduced sustained component, oscillations superimposed on the response, a poststimulus hyperpolarization, and altered adaptation properties to dim background light. Comparison of photoreceptor responses obtained from wild type, trp, and trpl showed that the responses obtained from the trp and trpl null mutants did not sum up to that of the wild-type response. To explain the nonlinear summation at the peak of the response, Reuss et al. (1997) proposed that Ca(2+) ions entering through the TRP channel modulate TRP and TRPL channel activities differentially. However, nonlinear summation was present not only at the peak but throughout the duration of response. Two lines of evidence are presented to suggest that, in addition to the interaction proposed by Reuss et al. (1997), there are other forms of interactions between TRP and TRPL channels, probably involving the channel proteins themselves.
Because almost everything we know about Drosophila phototransduction has come from studies based on genetic approaches, this review begins with a discussion of genetic approaches. We then present a brief overview of Drosophila phototransduction (section on Drosophila Phototransduction: An Overview) followed by a more detailed treatment of individual components of the transduction machinery (section on Components of the Phototransduction Machinery). Discussion of transduction mechanisms is presented under three headings: Mechanism(s) of Channel Excitation, Organization of the Transduction Proteins, and Regulatory Mechanisms in Phototransduction. Perhaps the most important unanswered question in this field is the mechanism(s) of activation and regulation of transduction channels. This question is explored in the section entitled Mechanism(s) of Channel Excitation. Identification of at least two of the proteins discussed was totally unexpected: the rhodopsin chaperone protein, ninaA , and the signal complex scaffold protein, INAD. They are discussed in the sections titled Requirement for a Chaperone Protein for Rh1 Opsin, and Formation of Signaling Complexes, respectively. One of the important developments in this field has been the discovery of mammalian homologs of many of the proteins identified in Drosophila . A brief discussion of the most extensively studied of these, the mammalian homologs of light-activated channel protein, trp , is presented in the section on Mammalian Homologs of trp . We conclude the review with Perspective, a brief look at the current status and the future outlook of the field.
The Drosophila ninaA gene encodes photoreceptor-specific cyclophilin thought to play a critical role in rhodopsin folding or transport during its synthesis or maturation in the most abundant subclass of photoreceptors. Cyclophilins comprise a highly conserved family of proteins which are the primary targets of the potent immunosuppressive drug, cyclosporin A (CsA), and which display peptidyl prolyl cis-trans-isomerase (PPIase) activity. In an attempt to identify mammalian cyclophilins with properties similar to the NinaA protein, a probe derived from the ninaA cDNA was used to screen bovine retinal cDNA libraries. The screen identified two major alternatively spliced forms of cDNA that would encode proteins containing a region of high homology to other cyclophilins and that are expressed specifically in the retina. These proteins represent a new class of cyclophilins with novel structural features and greatly reduced PPIase and CsA binding activities in comparison to other known cyclophilins. Tissue in situ hybridization and immunolocalization of the proteins showed that the RNA and protein products are expressed in photoreceptors as well as other retinal neurons. However, among photoreceptors, the proteins are found predominantly in cones. Thus, mammalian retinas do contain cyclophilins that are retina- specifically and photoreceptor class-preferentially expressed. The results suggest that, in cones, the main function of these proteins is, like the NinaA protein, to facilitate proper folding or intracellular transport of opsins. The Drosophila ninaA gene encodes photoreceptor-specific cyclophilin thought to play a critical role in rhodopsin folding or transport during its synthesis or maturation in the most abundant subclass of photoreceptors. Cyclophilins comprise a highly conserved family of proteins which are the primary targets of the potent immunosuppressive drug, cyclosporin A (CsA), and which display peptidyl prolyl cis-trans-isomerase (PPIase) activity. In an attempt to identify mammalian cyclophilins with properties similar to the NinaA protein, a probe derived from the ninaA cDNA was used to screen bovine retinal cDNA libraries. The screen identified two major alternatively spliced forms of cDNA that would encode proteins containing a region of high homology to other cyclophilins and that are expressed specifically in the retina. These proteins represent a new class of cyclophilins with novel structural features and greatly reduced PPIase and CsA binding activities in comparison to other known cyclophilins. Tissue in situ hybridization and immunolocalization of the proteins showed that the RNA and protein products are expressed in photoreceptors as well as other retinal neurons. However, among photoreceptors, the proteins are found predominantly in cones. Thus, mammalian retinas do contain cyclophilins that are retina- specifically and photoreceptor class-preferentially expressed. The results suggest that, in cones, the main function of these proteins is, like the NinaA protein, to facilitate proper folding or intracellular transport of opsins.
The time-course of light-induced changes in membrane voltage and resistance were measured in single photoreceptors in eyecup preparations of Gekko gekko. A small circular stimulus directed toward the impaled receptor produced membrane hyperpolarization. Application of a steady annular light to the receptor periphery resulted in diminution of the receptor's response to the stimulus. The effects of illumination of the surrounding receptors were isolated by directing a small, steady desensitizing light to the impaled receptor and then applying a peripheral stimulus. Brief stimuli produced a transient decrease in resistance with rapid onset and offset, a time-course similar to that of the response diminution. For some cells a depolarization that coincided with the resistance decrease was seen. During illumination with prolonged stimuli the resistance decrease was followed by a slow increase. After offset resistance rose transiently above the original value and then returned slowly to its original value. The slow resistance changes were not accompanied by changes in membrane voltage. The response diminution, resistance decrease, and depolarization were not observed in retinas treated with aspartate or hypoxia. It is therefore concluded that these effects are mediated by horizontal cells. The diminution is achieved by shunting the receptor potential and may play a role in field adaptation.