With an increasing livestock population, animal manure production has been steadily increasing in Korea. This trend has forced farmers to spend more money for animal manure treatment in their farm. Therefore, research utilizing animal manure as a renewable resources has become increasingly important. The purpose of this study was to develop a stable advanced wastewater treatment system can be applied to conventional animal wastewater treatment processes and evaluate its contribution to reduce effluent discharge volume by recycling as flushing water. AOP (advanced oxidation process) process improved wastewater treatment efficiency in terms of color, suspended solids (SS) and chemical oxygen demand (COD). Due to the addition of Hydrogen peroxide (), pathogens, Salmonella and E. coli, reduction was accomplished. To enhance ozone treatment effect, three levels of ozone test on secondary effluent of pig slurry purification system were conducted. At the level of 5 g/hr, 6.7 g/hr and 8.4 g/hr color of secondary effluent of pig slurry purification system were decreased from 2,433 to 2,199, 2,433 to 1,980 and 2,433 to 243, respectively.
This research was conducted to examine proper manure treatment methods for a high-rise swine barn with results of the fact-finding survey on manure treatment methods used in high-rise swine barns and sawdust swine barns In Korea. The average temperatures on bedding of control, T1, and T2 were between with little difference. Air flow rate of T2 was slower than those of control and T1. Dust generation in control was 54 cpm which was higher than T1 and T2. The average ammonia concentration in control was highest showing 6.0 ppm, ranged from 0.5 to 14.5 ppm, with statistical difference (p. Water contents of control and T2 were close to the proper water content, 65%. T1 had the highest water content and pH, and the lowest organic matter and C/N ratio. The volumes of sawdust spread per head were 0.26 and in control and T2, respectively, which was less than T1. Operating cost such as an electricity bill for blowers was cheap in T2. Hence, T2 bedding sawdust up to 10 cm thick and periodically spreading additional sawdust from second story was recommended.
A gene (sll0158) putatively encoding a glycogen branching enzyme (GBE, E.C. 2.4.1.18) was cloned from Synechocystis sp. PCC6803, and the recombinant protein expressed and characterized. The PCR-amplified putative GBE gene was ligated into a pET-21a plasmid vector harboring a T7 promoter, and the recombinant DNA transformed into a host cell, E. coli BL21(DE3). The IPTG-induced enzymes were then extracted and purified using Ni-NTA affinity chromatography. The putative GBE gene was found to be composed of 2,310 nucleotides and encoded 770 amino acids, corresponding to approx. 90.7 kDa, as confirmed by SDS-PAGE and MALDI-TOF-MS analyses. The optimal conditions for GBE activity were investigated by measuring the absorbance change in iodine affinity, and shown to be pH 8.0 and 30 degrees in a 50 mM glycine-NaOH buffer. The action pattern of the GBE on amylose, an alpha-(1,4)-linked linear glucan, was analyzed using high-performance anion-exchange chromatography (HPAEC) after isoamylolysis. As a result, the GBE displayed alpha-glucosyl transferring activity by cleaving the alpha-(1,4)-linkages and transferring the cleaved maltoglycosyl moiety to form new alpha-(1,6)- branch linkages. A time-course study of the GBE reaction was carried out with biosynthetic amylose (BSAM; Mp approximately = 8,000), and the changes in the branch-chain length distribution were evaluated. When increasing the reaction time up to 48 h, the weight- and number-average DP (DPw and DPn) decreased from 19.6 to 8.7 and from 17.6 to 7.8, respectively. The molecular size (Mp, peak Mw approximately = 2.45-2.75 x 10(5)) of the GBE-reacted product from BSAM reached the size of amylose (AM) in botanical starch, yet the product was highly soluble and stable in water, unlike AM molecules. Thus, GBE-generated products can provide new food and non-food applications, owing to their unique physical properties.
This survey was conducted to investigate the situation of housing type in poultry farms in Korea. The number surveyed among the farm size over 30,000 heads was 1,965 farms. Poultry housing types of windowless, open sided, vinyl house type were 19.0, 47.7, 19.8%, respectively. Waterers of nipple, bell, and 8 feet trough used in smaller than 50,000 heads of poultry farm were 40.6, 11.3 and 42.8%, respectively. But the bigger farm in the farm size of over 100,000 heads used more nipple waterer. Feeders of disk, hopper and chain used in poultry farm were 54.5, 16.3, 15.8%, respectively. Manure collecting system of scraper and belt was 29.4, 71.5 %, respectively. Ventilation systems of natural ventilation, natural + mechanical ventilation, mechanical ventilation were 40.5, 39.8, 20.7%, respectively.
This survey was conducted to investigate housing types of Korean native cattle and beef cattle farms in Korea. The farm sized over 50 heads of cattle, 7,433 farms were surveyed. Regarding housing types for Korean native cattle and beef cattle, litter barn, freestall, mooring+litter ground and others accounted for 87.1, 9.8, 3.0, and 2.9 %, respectively. Most of Korean native cattle and beef cattle farms (94.7%) used litter floor rather than scraper. As for roof types, slate, panel, iron plate, galvanized plate, colored iron plate and sunlight represented 32.2, 13.7, 12.2, 10.2, 9.7, and 8.9 %, respectively. Open side wall type and winch curtain were 55.6, and 47.6 %, respectively. Bigger farms seemed to used more winch curtain than open style. Utilization period of automatic feeder, waterer, electric facility, and cooling facility was 6.7, 8.0, 8.5, and 6.0 years, respectively.
This study was conducted to determine the effects of pig manure composting on emission of dinitrogen oxide () that is greenhouse gas. Fresh pig manure was mixed with sawdust as bulking agent and moisture content of mixed compost was adjusted by 61.9%. After mixing bulking agent with pig manure that was left to compost with aeration in composting chamber for an initial period of 30 days. At the end of this period, that was decomposed and a second period of composting was conducted without aeration for 60 days. Temperature during the initial composting period was above for 7 days. Moisture reduction rate by composting pig manure was 36.7%. Produced during composting was 0.043g/T-Ng.
This study was carried out to develop the technique for manufacturing activated carbon from livestock manure and to analyse it's odor absorptiveness. Each of layer manure(LM), litter from broiler house(BL) and litter from dairy barn(DL), compost from layer manure(LC) and pig manure(PC), and coconut shell(CS) was used as a raw material. Activated carbon by grinding the raw material, adding the coal tar as a binder, palletizing, drying, heating with gas at for 1 hour, activating by reaction with steam at a temperature of for 1 hour. Moisture contents of raw material was 44.9% in layer compost, 71.9% in layer manure, 24.4% in broiler litter, 47% in pig manure compost and 33.9% in dairy litter. Volatile matter in layer compost, layer manure, broiler litter, pig manure compost and dairy litter was 18.8%, 31.0%, 49.8%, 22.3% and 11.6%, respectively. Surface area(BET) of activated carbon from layer compost, layer manure, broiler litter, pig manure compost, dairy litter and coconut shell was 259.8, 209.8, 63.5, 442.3, 812.9 and , respectively. Activated carbon made by livestock manure or litter were examined with scanning electron microscope, and micropore was a type of sponge like particles honeycombed with chambers. Pore size of activated carbon was ranged from 0.39 to , but coconut shell was . Iodine absorptiveness of activated carbon from livestock manure was . But activated carbon made by coconut shell was 1000 mg/g. Each activated carbon could absorb odor compound very well. Absorptiveness of activated carbon from layer manure for hydrogen sulfide and trimethyl amino was 74.5% and 73.9% at the accumulated flux of 60,000 ml, but, in the case of ammonia was only 15.2% at the accumulated flux of 10,000 ml