Rapid and efficient protocols to generate oligodendrocytes (OL) from human induced pluripotent stem cells (iPSC) are currently lacking, but may be a key technology to understand the biology of myelin diseases and to develop treatments for such disorders. Here, we demonstrate that the induction of three transcription factors (SOX10, OLIG2, NKX6.2) in iPSC-derived neural progenitor cells is sufficient to rapidly generate O4+ OL with an efficiency of up to 70% in 28 d and a global gene-expression profile comparable to primary human OL. We further demonstrate that iPSC-derived OL disperse and myelinate the CNS of Mbpshi/shiRag-/- mice during development and after demyelination, are suitable for in vitro myelination assays, disease modeling, and screening of pharmacological compounds potentially promoting oligodendroglial differentiation. Thus, the strategy presented here to generate OL from iPSC may facilitate the studying of human myelin diseases and the development of high-throughput screening platforms for drug discovery.
Abstract Objective Nuclear depletion and mislocalization of RNA-binding proteins (RBPs) trans-activation response DNA-binding protein of 43 kDa (TDP-43) and fused in sarcoma (FUS) are thought to contribute to the pathogenesis of a number of disorders, including amyotrophic lateral sclerosis (ALS). We recently found that TDP-43 as well as polypyrimidine tract binding protein (PTB) have decreased expression and mislocalization in oligodendrocytes in demyelinated lesions in an experimental mouse model of multiple sclerosis (MS) caused by Theiler’s murine encephalomyelitis virus infection. Methods The latter finding prompted us to investigate TDP-43, FUS, and PTB in the demyelinated lesions of MS and in in vitro cultured human brain-derived oligodendrocytes. Results We found: i) mislocalized TDP-43 in oligodendrocytes in active lesions in some MS patients; ii) decreased PTB1 expression in oligodendrocytes in mixed active/inactive demyelinating lesions; iii) decreased nuclear expression of PTB2 in neurons in cortical demyelinating lesions; iv) nuclear depletion of TDP-43 in oligodendrocytes under metabolic stress induced by low glucose/low nutrient conditions compared to optimal culture conditions. Conclusion TDP-43 has been found to have a key role in oligodendrocyte function and viability, while PTB is important in neuronal differentiation, suggesting that altered expression and mislocalization of these RBPs in MS lesions may contribute to the pathogenesis of demyelination and neurodegeneration. Our findings also identify nucleocytoplasmic transport as a target for treatment.
Mature oligodendrocytes form myelin sheaths that are crucial for the insulation of axons and efficient signal transmission in the central nervous system. Recent evidence has challenged the classical view of the functionally static mature oligodendrocyte and revealed a gamut of dynamic functions such as the ability to modulate neuronal circuitry and provide metabolic support to axons. Despite the recognition of potential heterogeneity in mature oligodendrocyte function, a comprehensive summary of mature oligodendrocyte diversity is lacking. We delve into early 20 th -century studies by Robertson and Río-Hortega that laid the foundation for the modern identification of regional and morphological heterogeneity in mature oligodendrocytes. Indeed, recent morphologic and functional studies call into question the long-assumed homogeneity of mature oligodendrocyte function through the identification of distinct subtypes with varying myelination preferences. Furthermore, modern molecular investigations, employing techniques such as single cell/nucleus RNA sequencing, consistently unveil at least six mature oligodendrocyte subpopulations in the human central nervous system that are highly transcriptomically diverse and vary with central nervous system region. Age and disease related mature oligodendrocyte variation denotes the impact of pathological conditions such as multiple sclerosis, Alzheimer’s disease, and psychiatric disorders. Nevertheless, caution is warranted when subclassifying mature oligodendrocytes because of the simplification needed to make conclusions about cell identity from temporally confined investigations. Future studies leveraging advanced techniques like spatial transcriptomics and single-cell proteomics promise a more nuanced understanding of mature oligodendrocyte heterogeneity. Such research avenues that precisely evaluate mature oligodendrocyte heterogeneity with care to understand the mitigating influence of species, sex, central nervous system region, age, and disease, hold promise for the development of therapeutic interventions targeting varied central nervous system pathology.
Abstract Increasing evidence indicates heterogeneity in functional and molecular properties of oligodendrocyte lineage cells both during development and under pathologic conditions. In multiple sclerosis, remyelination of grey matter lesions exceeds that in white matter. Here we used cells derived from grey matter versus white matter regions of surgically resected human brain tissue samples, to compare the capacities of human A2B5-positive progenitor cells and mature oligodendrocytes to ensheath synthetic nanofibers, and relate differences to the molecular profiles of these cells. For both cell types, the percentage of ensheathing cells was greater for grey matter versus white matter cells. For both grey matter and white matter samples, the percentage of cells ensheathing nanofibers was greater for A2B5-positive cells versus mature oligodendrocytes. Grey matter A2B5-positive cells were more susceptible than white matter A2B5-positive cells to injury induced by metabolic insults. Bulk RNA sequencing indicated that separation by cell type (A2B5-positive vs mature oligodendrocytes) is more significant than by region but segregation for each cell type by region is apparent. Molecular features of grey matter versus white matter derived A2B5-positive and mature oligodendrocytes were lower expression of mature oligodendrocyte genes and increased expression of early oligodendrocyte lineage genes. Genes and pathways with increased expression in grey matter derived cells with relevance for myelination included those related to responses to external environment, cell-cell communication, cell migration, and cell adhesion. Immune and cell death related genes were up-regulated in grey matter derived cells. We observed a significant number of up-regulated genes shared between the stress/injury and myelination processes, providing a basis for these features. In contrast to oligodendrocyte lineage cells, no functional or molecular heterogeneity was detected in microglia maintained in vitro, likely reflecting the plasticity of these cells ex vivo. The combined functional and molecular data indicate that grey matter human oligodendrocytes have increased intrinsic capacity to myelinate but also increased injury susceptibility, in part reflecting their being at a stage earlier in the oligodendrocyte lineage.
In multiple sclerosis loss of myelin and oligodendrocytes impairs saltatory signal transduction and leads to neuronal loss and functional deficits. Limited capacity of oligodendroglial precursor cells to differentiate into mature cells is the main reason for inefficient myelin repair in the central nervous system. Drug repurposing constitutes a powerful approach for identification of pharmacological compounds promoting this process.A phenotypic compound screening using the subcellular distribution of a potent inhibitor of oligodendroglial cell differentiation, namely p57kip2, as differentiation competence marker was conducted. Hit compounds were validated in terms of their impact on developmental cell differentiation and myelination using both rat and human primary cell cultures and organotypic cerebellar slice cultures, respectively. Their effect on spontaneous remyelination was then investigated following cuprizone-mediated demyelination of the corpus callosum.A number of novel small molecules able to promote oligodendroglial cell differentiation were identified and a subset was found to foster human oligodendrogenesis as well as myelination ex vivo. Among them the steroid danazol and the anthelminthic parbendazole were found to increase myelin repair.We provide evidence that early cellular processes involved in differentiation decisions are applicable for the identification of regeneration promoting drugs and we suggest danazol and parbendazole as potent therapeutic candidates for demyelinating diseases.This work was supported by the Jürgen Manchot Foundation, Düsseldorf; Research Commission of the Medical Faculty of Heinrich-Heine-University Düsseldorf; Christiane and Claudia Hempel Foundation; Stifterverband/Novartisstiftung; James and Elisabeth Cloppenburg, Peek and Cloppenburg Düsseldorf Stiftung and International Progressive MS Alliance (BRAVEinMS).
Abstract Objective Multiple sclerosis is an inflammatory demyelinating disorder associated with blood-brain-barrier breakdown, where myelin repair is reduced and ultimately fails. Our aim was to investigate the effect of a systemically circulating molecule fibrinogen, which is abnormally present in the central nervous system as a result of blood-brain barrier breakdown on human oligodendrocyte lineage cells. Methods In situ immunofluorescence was performed using anti-fibrinogen and anti-SOX10 antibodies. Mature oligodendrocytes and late progenitors were derived from brain tissue from pediatric and adult donors. Early progenitors were generated from human induced pluripotent stem cells. Following fibrinogen addition to each of these cultures, cell viability and functional capacity was evaluated. Downstream signalling following fibrinogen exposure was confirmed by immunofluorescence microscopy and bulk RNA sequencing. Results In situ studies showed fibrinogen on SOX10-positive oligodendroglia in multiple sclerosis, both in plaques and normal-appearing white matter, and white matter in amyotrophic lateral sclerosis. In response to in vitro exposure to fibrinogen, mature oligodendrocytes from adults showed increased ensheathment capacity and upregulation of lipid synthesis, whereas pediatric-age late oligodendrocyte precursors showed a decrease. Early precursors were unable to differentiate but expressed astrocytic markers and increased proliferation. Fibrinogen-exposed cells show bone morphogenetic protein signalling, more prominently in mature oligodendrocytes. Interpretation We demonstrate that fibrinogen is deposited on oligodendrocytes in multiple sclerosis and has distinct functional consequences dependent on cell lineage stage. Our findings derived using human OL lineage cells suggest fibrinogen may benefit myelin maintenance by mature oligodendrocytes, while preventing earlier lineage cells from differentiating and repairing multiple sclerosis lesions.
To determine whether there are nuclear depletion and cellular mislocalization of RNA-binding proteins (RBPs) transactivation response DNA-binding protein of 43 kDa (TDP-43), fused in sarcoma (FUS), and polypyrimidine tract–binding protein (PTB) in MS, as is the case in amyotrophic lateral sclerosis (ALS) and oligodendrocytes infected with Theiler murine encephalomyelitis virus (TMEV), we examined MS lesions and in vitro cultured primary human brain–derived oligodendrocytes.
Methods
Nuclear depletion and mislocalization of TDP-43, FUS, and PTB are thought to contribute to the pathogenesis of ALS and TMEV demyelination. The latter findings prompted us to investigate these RBPs in the demyelinated lesions of MS and in in vitro cultured human brain–derived oligodendrocytes under metabolic stress conditions.
Results
We found (1) mislocalized TDP-43 in oligodendrocytes in active lesions in some patients with MS; (2) decreased PTB1 expression in oligodendrocytes in mixed active/inactive demyelinating lesions; (3) decreased nuclear expression of PTB2 in neurons in cortical demyelinating lesions; and (4) nuclear depletion of TDP-43 in oligodendrocytes under metabolic stress induced by low glucose/low nutrient conditions compared with optimal culture conditions.
Conclusion
TDP-43 has been found to have a key role in oligodendrocyte function and viability, whereas PTB is important in neuronal differentiation, suggesting that altered expression and mislocalization of these RBPs in MS lesions may contribute to the pathogenesis of demyelination and neurodegeneration. Our findings also identify nucleocytoplasmic transport as a target for treatment.