The dune density is an important parameter for representing the characteristics of desert geomorphology, providing a precise depiction of the undulating topography of the desert. Owing to the limitations of estimation methods and data availability, accurately quantifying dune density has posed a significant challenge; in response to this issue, we propose an innovative model to estimate dune density using a dune vertex search combined with four-directional orographic spectral decomposition. This study reveals several key insights: (1) Taklimakan Desert distributes approximately 5.31 × 107 dunes, with a linear regression fit R2 of 0.79 between the estimated and observed values. The average absolute error and root mean square error are calculated as 25.61 n/km2 and 30.48 n/km2, respectively. (2) The distribution of dune density across the eastern, northeastern, southern, and western parts of the Taklimakan Desert is relatively lower, while there is higher dune density in the central and northern areas. (3) The observation data constructed using the improved YOLOv8s algorithm and remote sensing imagery effectively validate the estimation results of dune density. The new algorithm demonstrates a high level of accuracy in estimating sand dune density, thereby providing crucial parameters for sub-grid orographic parameterization in desert regions. Additionally, its application potential in dust modeling appears promising.
Recently, our group developed a synergistic brain drug delivery method to achieve simultaneous transcranial hyperthermia and localized blood–brain barrier opening via MR-guided focused ultrasound (MRgFUS). In a rodent model, we demonstrated that the ultrasound power required for transcranial MRgFUS hyperthermia was significantly reduced by injecting microbubbles (MBs). However, the specific mechanisms underlying the power reduction caused by MBs remain unclear. The present study aims to elucidate the mechanisms of MB-enhanced transcranial MRgFUS hyperthermia through numerical studies using the finite element method. The microbubble acoustic emission (MAE) and the viscous dissipation (VD) were hypothesized to be the specific mechanisms. Acoustic wave propagation was used to model the FUS propagation in the brain tissue, and a bubble dynamics equation for describing the dynamics of MBs with small shell thickness was used to model the MB oscillation under FUS exposures. A modified bioheat transfer equation was used to model the temperature in the rodent brain with different heat sources. A theoretical model was used to estimate the bubble shell's surface tension, elasticity, and viscosity losses. The simulation reveals that MAE and VD caused a 40.5% and 52.3% additional temperature rise, respectively. Compared with FUS only, MBs caused a 64.0% temperature increase, which is consistent with our previous animal experiments. Our investigation showed that MAE and VD are the main mechanisms of MB-enhanced transcranial MRgFUS hyperthermia.
Abstract Transcranial focused ultrasound (tFUS) is an emerging modality with strong potential for non‐invasively treating brain disorders. However, the inhomogeneity and complex structure of the skull induce substantial phase aberrations and pressure attenuation; these can distort and shift the acoustic focus, thus hindering the efficiency of tFUS therapy. To achieve effective treatments, phased array transducers combined with aberration correction algorithms are commonly implemented. The present report aims to provide a comprehensive review of the current methods used for tFUS phase aberration correction. We first searched the PubMed and Web of Science databases for studies on phase aberration correction algorithms, identifying 54 articles for review. Relevant information, including the principles of algorithms and refocusing performances, were then extracted from the selected articles. The phase correction algorithms involved two main steps: acoustic field estimation and transmitted pulse adjustment. Our review identified key benchmarks for evaluating the effectiveness of these algorithms, each of which was used in at least three studies. These benchmarks included pressure and intensity, positioning error, focal region size, peak sidelobe ratio, and computational efficiency. Algorithm performances varied under different benchmarks, thus highlighting the importance of application‐specific algorithm selection for achieving optimal tFUS therapy outcomes. The present review provides a thorough overview and comparison of various phase correction algorithms, and may offer valuable guidance to tFUS researchers when selecting appropriate phase correction algorithms for specific applications.