PD-L1 (CD274) contributes to functional exhaustion of T cells and limits immune responses in patients with cancer. In this study, we report the identification of an human leukocyte antigen (HLA)-A2-restricted epitope from PD-L1, and we describe natural, cytolytic T-cell reactivity against PD-L1 in the peripheral blood of patients with cancer and healthy individuals. Notably, PD-L1-specific T cells were able not only to recognize and kill tumor cells but also PD-L1-expressing dendritic cells in a PD-L1-dependent manner, insofar as PD-L1 ablation rescued dendritic cells from killing. Furthermore, by incubating nonprofessional antigen-presenting cells with long peptides from PD-L1, we found that PD-L1 was rapidly internalized, processed, and cross-presented by HLA-A2 on the cell surface. Apparently, this cross-presentation was TAP-independent, as it was conducted not only by B cells but in addition by TAP-deficient T2-cells. This is intriguing, as soluble PD-L1 has been detected in the sera from patients with cancer. PD-L1-specific CTL may boost immunity by the killing of immunosuppressive tumor cells as well as regulatory cells. However, PD-L1-specific CTLs may as well suppress immunity by the elimination of normal immune cells especially PD-L1 expressing mature dendritic cells.
Tryptophan-2,3-dioxygenase (TDO) physiologically regulates systemic tryptophan levels in the liver. However, numerous studies have linked cancer with activation of local and systemic tryptophan metabolism. Indeed, similar to other heme dioxygenases TDO is constitutively expressed in many cancers. In the present study, we detected the presence of both CD8
Programmed cell death 1 ligand 1 (PD-L1) is an important regulator of T-cell responses and may consequently limit anticancer immunity. We have recently identified PD-L1-specific, cytotoxic CD8+ T cells. In the present study, we develop these findings and report that CD4+ helper T cells spontaneously recognize PD-L1. We examined the locality of a previously identified HLA-A*0201-restricted PD-L1-epitope for the presence of possible CD4+ T-cell epitopes. Thus, we identified naturally occurring PD-L1-specific CD4+ T cells among the peripheral blood lymphocytes of cancer patients and - to lesser extents - healthy donors, by means of ELISPOT assays. PD-L1-specific CD4+ T cells appeared to be TH17 cells exhibiting an effector T-cell cytokine profile. Hence, PD-L1-specific CD4+ T cells released interferon γ (IFNγ), tumor necrosis factor α (TNFα) and interleukin-17 (IL-17) in response to a long PD-L1-derived peptide. Furthermore, we demonstrate that the specific recognition of PD-L1 by CD4+ T cells is MHC class II-restricted. Natural T-cell responses against PD-L1 are noteworthy as they may play a prominent role in the regulation of the immune system. Thus, cytokine release from PD-L1-specific CD4+ T cells may surmount the overall immunosuppressive actions of this immune checkpoint regulator. Moreover, PD-L1-specific T cells might be useful for anticancer immunotherapy, as they may counteract common mechanisms of immune escape mediated by the PD-L1/PD-1 pathway.