Abstract Hematopoietic progenitor kinase 1 (HPK1, MAP4K1) is a serine/threonine kinase that has been demonstrated to have suppressive effects across a range of immune cells, including T cells and dendritic cells. Loss of MAP4K1 kinase activity is sufficient to enhance T cell receptor (TCR) signaling resulting in robust anti-tumor immunity alone and in combination with checkpoint inhibition. These data support that MAP4K1 is a novel and attractive target for cancer immunotherapy. We have designed a series of potent, selective, and orally bioavailable inhibitors of MAP4K1. Treatment of primary human T cells or peripheral blood with either BLU2069 or BLU6348 was able to inhibit phosphorylation of pSLP76, a scaffolding protein that regulates MAPK downstream of the TCR. In addition, we show that compound treatment can enhance cytokine secretion and proliferation in human T cells in response to TCR crosslinking. The therapeutic benefit of MAP4K1 inhibition alone and in combination with anti-PD-L1 was evaluated in multiple syngeneic mouse tumor models including MCA205, MC38 and EMT-6. Treatment with either compound alone led to a reduction in tumor growth that was further enhanced when combined with anti-PD-L1 therapy. When tumors were grown in immunocompromised mice (MCA-205) or in the setting of CD8+ T cell depletion (MC-38), the anti-tumor effect of BLU2069 and BLU6348 respectively was lost, confirming the importance of immune cells in compound mediated antitumor effects. We further show that MCA205 tumors harvested from mice treated with BLU2069 had increased intratumoral CD8+ T cell infiltration, resulting in enhanced CD8/Treg ratios. In addition, transcriptional analysis of tumor lysates showed that BLU2069 significantly increased genes associated with an effector phenotype. These data support that pharmacological inhibition of MAP4K1 reduced tumor burden and enhanced antitumor immunity in preclinical tumor models. Finally, we show that MAP4K1 inhibition can enhance CD3/CD28-induced IL2 and IFNγ in human tumor infiltrating lymphocytes (TILs) generated from melanoma or non-small cell lung cancer (NSCLC) primary tumors. This work describes the identification of potent small molecule inhibitors of MAP4K1 which could be novel therapeutic agents and induce an effective immune response either alone or in combination with approved checkpoint inhibitors. Citation Format: Kerrie Faia, Alberto Toso, Kristina Fetalvero, Marly Roche, Steven Bench, Erin O'Hearn, Qiongfang Cao, Kerry-Ann Bright, Debora Paduraru, Andrea Romagnani, Weifan Weng, Tina Zimmermann, Michael Burke, Joshua Close, Luke Green, Joseph Kim, Chandra Miduturu, Alison Ribeiro, Marina Bacac, Sylvia Herter, Emanuele Perola, Michael Sheets, Jan Eckmann, Gordon Heidkamp, Tary Traore, Erik Gerson, Rich Woessner, Carsten Wolter, Felix Scheuplein, Nisha Perez, Timothy LaBranche, Grace Silva, Chaoyang Ye, Caitlin Utt, Stefan Gross, James R. Bischoff, Marion Dorsch, Tim Guzi, Klaus Hoeflich, Jason Brubaker. MAP4K1 inhibition enhances immune cell activation and anti-tumor immunity in preclinical tumor models [abstract]. In: Proceedings of the American Association for Cancer Research Annual Meeting 2021; 2021 Apr 10-15 and May 17-21. Philadelphia (PA): AACR; Cancer Res 2021;81(13_Suppl):Abstract nr 1717.
Abstract Hepatocellular carcinoma (HCC) is the third leading cause of cancer deaths worldwide. Chemotherapy has proven ineffective, and Sorafenib remains the only approved targeted drug with no second or third line treatment options. Sorafenib slows the growth of advanced liver cancers and helps some patients live longer - by an average of about three months. There is a pressing need for more effective therapies. FGF19 is a highly controlled hormone normally expressed in the intestine, that acts in the liver to regulate bile acid synthesis and hepatocyte proliferation via activation of FGFR4. In 7% of patients with HCC, FGF19 is contained within a focal amplification on chromosome 11q13.3. Overexpression of FGF19 in transgenic mice produces liver tumors which are sensitive to treatment with a FGFR4 tool antibody. Additionally, the growth of tumor cells in xenograft models with FGF19 amplification is dependent on FGFR4 signaling. Thus, selective inhibition of FGFR4 might represent a viable strategy for treating this genetically defined subgroup of HCC patients. Herein, we describe our efforts to identify an ultraselective small molecule inhibitor of FGFR4 which spares the other FGFR isoforms with the intent to avoid FGFR1-3 driven, dose limiting toxicities like soft tissue mineralization. Utilizing structure based drug design, we prepared a series of inhibitor templates designed to covalently modify a target cysteine residue present in FGFR4, but not the other FGFR isoforms. Optimization of one of these templates led to the identification of BLU9931, a highly potent and exquisitely selective, covalent inhibitor of FGFR4. BLU9931 persistently inhibits FGFR4 mediated signaling in cancer cells as evidenced by decreased phosphorylation of FRS2 and ERK. Importantly, BLU9931 does not block signaling driven by FGFR1. Upon oral dosing in mice, BLU9931 is well tolerated and demonstrates robust and dose dependent induction of the FGFR4 target gene CYP7a1 in Hep3B cells, a FGF19 amplified HCC xenograft model. Upon extended dosing, BLU9931 causes sustained regression of tumors, including complete responses. We then explored if HCCs with alterations other than FGF19 amplification are also dependent on FGFR4 signaling. Dosing of molecularly annotated patient derived HCC xenografts with BLU9931 suggests that selective targeting of FGFR4 represents a viable option for the treatment of an expanded population segment of genomically defined HCC patients, much larger than originally anticipated. Citation Format: Margit Hagel, Chandra Miduturu, Mike Sheets, Weifan Weng, Nooreen Rubin, Neil Bifulco, Lucian DiPietro, Joseph Kim, Natasja Brooijmans, Nicolas Stransky, Christopher Winter, Christoph Lengauer, Timothy Guzi. First isoform selective inhibitor of FGFR4 for the treatment of genomically defined patients with hepatocellular carcinoma. [abstract]. In: Proceedings of the 105th Annual Meeting of the American Association for Cancer Research; 2014 Apr 5-9; San Diego, CA. Philadelphia (PA): AACR; Cancer Res 2014;74(19 Suppl):Abstract nr LB-324. doi:10.1158/1538-7445.AM2014-LB-324
Aberrant signaling through the fibroblast growth factor 19 (FGF19)/fibroblast growth factor receptor 4 (FGFR 4) signaling complex has been shown to cause hepatocellular carcinoma (HCC) in mice and has been implicated to play a similar role in humans. We have developed BLU9931, a potent and irreversible small-molecule inhibitor of FGFR4, as a targeted therapy to treat patients with HCC whose tumors have an activated FGFR4 signaling pathway. BLU9931 is exquisitely selective for FGFR4 versus other FGFR family members and all other kinases. BLU9931 shows remarkable antitumor activity in mice bearing an HCC tumor xenograft that overexpresses FGF19 due to amplification as well as a liver tumor xenograft that overexpresses FGF19 mRNA but lacks FGF19 amplification. Approximately one third of patients with HCC whose tumors express FGF19 together with FGFR4 and its coreceptor klotho β (KLB) could potentially respond to treatment with an FGFR4 inhibitor. These findings are the first demonstration of a therapeutic strategy that targets a subset of patients with HCC.This article documents the discovery of BLU9931, a novel irreversible kinase inhibitor that specifically targets FGFR4 while sparing all other FGFR paralogs and demonstrates exquisite kinome selectivity. BLU9931 is efficacious in tumors with an intact FGFR4 signaling pathway that includes FGF19, FGFR4, and KLB. BLU9931 is the first FGFR4-selective molecule for the treatment of patients with HCC with aberrant FGFR4 signaling.
The pro-inflammatory chemokine, monocyte chemoattractant protein-1 (MCP-1), plays a fundamental role in monocyte recruitment and has been implicated as a contributing factor to atherosclerosis. The predominant cell types within the vessel wall--endothelial cells, smooth muscle cells, and macrophages--all contribute to overexpression of MCP-1 in atherosclerotic tissue. In this report we assess the role of MCP-1 expression by leukocytes on lesion progression in a murine model susceptible to atherosclerosis. Bone marrow cells from mice overexpressing a murine MCP-1 transgene on a background of apoE-deficiency or from control mice were transplanted into irradiated apoE-knockout mice. After repopulation of apoE-knockout mice with bone marrow containing the MCP-1 transgene, macrophages expressing the MCP-1 transgene were found in several tissues, including the aorta. Qualitative assessment of atherosclerosis in these mice revealed increased lipid staining, a 3-fold (P<0.001) increase in the amount of oxidized lipid, and increased immunostaining for macrophage cell surface markers with anti-F4/80 and anti-CD11b antibodies. There were no differences in plasma lipids, plasma lipoprotein profiles, or body weight between the 2 groups. These results provide the first direct evidence that MCP-1 expression by leukocytes, predominately macrophages, increases the progression of atherosclerosis by increasing both macrophage numbers and oxidized lipid accumulation.
Abstract With the rapid development of urbanization in China, the conservation and renewal of old cities face a huge challenge from a large amount of demolishment and construction without reasonable urban planning, which have been a widely discussed topic. As one of the most representative traditional residential blocks built in the period of the Republic of China (1912-1949), Zhongnongli has a great value in culture and plays a significant role in sustaining the continuity of history and maintaining the characteristics of the city in Nanjing. Taking Zhongnongli block as an example, based on the approach of architectural typology, this study aims to explore an organic renewal path to solve main problems in the process of regeneration, such as the confusion in space structure, the lack of public communication space and the protection of historical scene. Specifically, the research can be divided into two stages: typological extraction and typological transformation. Firstly, the thesis analyses and summarizes regional elements and deep structure of the block and buildings, trying to simplify and abstract them into prototypes like linear spatial pattern, pleasant spatial scale and patio house. Secondly, according to the traditional cultural connotation and modern life needs, these prototypes are appropriately transformed into new block morphology and building forms by means of reconstruction and translation. The experimental design we have done suggests that the application of the typological approach in contemporary urban planning and architectural design can contribute to realizing the harmonious coexistence of old and new buildings as well as the balance between inheritance and innovation, which serves as a model for the sustainable development of traditional residential blocks.
<p>Supplementary Figure S1. Potency against FGFR family and kinome selectivity. Supplementary Figure S2. Kinases with a cysteine at the equivalent position to Cys552 in FGFR4. Supplementary Figure S3. MALDI Mass Spectrometry of FGFR4. Supplementary Figure S4. Induction of Caspase 3/7 activity in Hep 3B cells. Supplementary Figure S5. FGFR4 turnover rates in Hep 3B cells. Supplementary Figure S6. Analysis of TCGA HCC samples. Supplementary Table S1. Kinetic parameters of FGFR4 inhibition by BLU9931. Supplementary Table S2. Pharmacokinetic parameters for BLU9931.</p>