ABSTRACT Enterococcus faecalis is commonly isolated from a variety of wound types. Despite its prevalence, the pathogenic mechanisms of E. faecalis during wound infection are poorly understood. Using a mouse wound infection model, we performed in vivo E. faecalis transposon sequencing and RNA sequencing to identify fitness determinants that are crucial for replication and persistence of E. faecalis during wound infection. We found that E. faecalis purine biosynthesis genes are important for bacterial replication during the early stages of wound infection, a time when purine metabolites are rapidly consumed by E. faecalis within wounds. We also found that the E. faecalis MptABCD phosphotransferase system (PTS), involved in the import of galactose and mannose, is crucial for E. faecalis persistence within wounds of both healthy and diabetic mice, especially when carbohydrate availability changes throughout the course of infection. During in vitro growth with mannose as the sole carbohydrate source, shikimate and purine biosynthesis genes were downregulated in the OG1RF Δ mptD mutant compared to the isogenic wild-type strain, suggesting a link between mannose transport, shikimate, and purine biosynthesis. Together, our results suggest that dynamic and temporal microenvironment changes at the wound site affects pathogenic requirements and mechanisms of E. faecalis and raise the possibility of lowering exogenous purine availability and/or targeting galactose/mannose PTS to control wound infections. IMPORTANCE Although E. faecalis is a common wound pathogen, its pathogenic mechanisms during wound infection are unexplored. Here, combining a mouse wound infection model with in vivo transposon and RNA sequencing approaches, we identified the E. faecalis purine biosynthetic pathway and galactose/mannose MptABCD phosphotransferase system as essential for E. faecalis acute replication and persistence during wound infection, respectively. The essentiality of purine biosynthesis and the MptABCD PTS is driven by the rapid consumption of purine metabolites by E. faecalis during acute replication and changing carbohydrate availability during the course of wound infection. Overall, our findings reveal the importance of the wound microenvironment in E. faecalis wound pathogenesis and how these metabolic pathways can be targeted to better control wound infections.
Abstract Single-cell RNA-seq (scRNA-seq) of pancreatic islets have reported on α- and β-cell gene expression in mice and subjects of predominantly European ancestry. We aimed to assess these findings in East-Asian islet-cells. 448 islet-cells were captured from three East-Asian non-diabetic subjects for scRNA-seq. Hierarchical clustering using pancreatic cell lineage genes was used to assign cells into cell-types. Differentially expressed transcripts between α- and β-cells were detected using ANOVA and in silico replications of mouse and human islet cell genes were performed. We identified 118 α, 105 β, 6 δ endocrine cells and 47 exocrine cells. Besides INS and GCG , 26 genes showed differential expression between α- and β-cells. 10 genes showed concordant expression as reported in rodents, while FAM46A was significantly discordant. Comparing our East-Asian data with data from primarily European subjects, we replicated several genes implicated in nuclear receptor activations, acute phase response pathway, glutaryl-CoA/tryptophan degradations and EIF2/AMPK/mTOR signaling. Additionally, we identified protein ubiquitination to be associated among East-Asian β-cells. We report on East-Asian α- and β-cell gene signatures and substantiate several genes/pathways. We identify expression signatures in East-Asian β-cells that perhaps reflects increased susceptibility to cell-death and warrants future validations to fully appreciate their role in East-Asian diabetes pathogenesis.
Abstract DNA damage and DNA damage response (DDR) pathways in β-cells have received little attention especially in the context of type-2 diabetes. We postulate that p21 plays a key role in DDR by preventing apoptosis, associated through its overexpression triggered by DNA stand breaks (DSBs). Our results show that β-cells from chronic diabetic mice had a greater extent of DSBs as compared to their non-diabetic counterparts. Comet assays and nuclear presence of γH2AX and 53bp1 revealed increased DNA DSBs in 16 weeks old (wo) db/db β-cells as compared to age matched non-diabetic β-cells. Our study of gene expression changes in MIN6 cell line with doxorubicin (Dox) induced DNA damage, showed that the DDR was similar to primary β-cells from diabetic mice. There was significant overexpression of DDR genes, gadd45a and p21 after a 24-hr treatment. Western blot analysis revealed increased cleaved caspase3 over time, suggesting higher frequency of apoptosis due to Dox-induced DNA strand breaks. Inhibition of p21 by pharmacological inhibitor UC2288 under DNA damage conditions (both in Dox-induced MIN6 cells and older db/db islets) significantly increased the incidence of β-cell apoptosis. Our studies confirmed that while DNA damage, specifically DSBs, induced p21 overexpression in β-cells and triggered the p53/p21 cellular response, p21 inhibition exacerbated the frequency of apoptosis.
ABSTRACT Adaptive T-cell immune response is essential in conferring protective immunity, a process requiring tight cellular homeostasis regulation. Pathological intrahepatic T-cell landscape has a role in NAFLD propagation; however, its activation remains unknown. To address this gap, we extensively characterized a novel diet-induced NAFLD murine model (LIDPAD) featuring key phenotypic and genetic attributes reflective of human NAFLD. Comparative transcriptomic-guided staging of human and murine NASH reinforced the robustness of LIDPAD in recapitulating critical transitory stages of human NAFLD. We found that angiopoietin-like 4 (Angptl4) shapes activation of the intrahepatic T-cell landscape through the modulation of eIF2α signaling during fibrosis. Single-immune cell analysis and hepatic transcriptomics during fibrosis, and kinase inhibitor screening confirmed that Angptl4 orchestrates the hyperactivation of intrahepatic adaptive immunity via eIF2α signaling. Consistently, immunoblocking of cAngplt4 reduces T-cell overactivation, delaying disease aggravation. Taken together, Angptl4 is a crucial determinant in shaping intrahepatic adaptive immunity during fibrosis in NAFLD.
Significance Insulin resistance and β-cell failure are the major defects in type 2 diabetes. We now demonstrate that local insulin resistance-induced increase in apolipoprotein CIII (apoCIII) within pancreatic islets causes promotion of an intraislet inflammatory milieu, increased mitochondrial metabolism, deranged regulation of β-cell cytoplasmic free Ca 2+ concentration ([Ca 2+ ] i ), and apoptosis. Decreasing apoCIII in vivo in animals with insulin resistance improves glucose tolerance, and apoCIII knockout islets transplanted into diabetic mice, with high systemic levels of apoCIII, demonstrate a normal [Ca 2+ ] i response pattern and no hallmarks of inflammation. Hence, under conditions of islet insulin resistance, locally produced apoCIII is an important diabetogenic factor involved in impairment of β-cell function and may thus constitute a novel target for the treatment of type 2 diabetes.
Toll-like receptors (TLRs), particularly TLR4, may act as immune sensors for metabolic stress signals such as lipids and link tissue metabolic changes to innate immunity. TLR signalling is not only tissue-dependent but also cell-type dependent and recent studies suggest that TLRs are not restricted to innate immune cells alone. Pancreatic islets, a hub of metabolic hormones and cytokines, respond to TLR signalling. However, the source of TLR signalling within the islet remain poorly understood. Uncovering the specific cell source and its role in mediating TLR signalling, especially within type 2 diabetes (T2D) islet will yield new targets to tackle islet inflammation, hormone secretion dysregulation and ultimately diabetes. In the present study, we immuno-characterised TLRs linked to pancreatic islets in both healthy and obese diabetic mice. We found that while TLRs1-4 and TLR9 were expressed in mouse islets, these TLRs did not co-localise with insulin-producing β-cells. β-Cells from obese diabetic mice were also devoid of these TLRs. While TLR immunoreactivity in obese mice islets increased, this was driven mostly by increased islet endothelial cell and islet macrophage presence. Analysis of human islet single-cell RNA-seq databases revealed that macrophages were an important source of islet TLRs. However, only TLR4 and TLR8 showed variation and cell-type specificity in their expression patterns. Cell depletion experiments in isolated mouse islets showed that TLR4 signalled through macrophages to alter islet cytokine secretome. Together, these studies suggest that islet macrophages are a dominant source of TLR4-mediated signalling in both healthy and diabetic islets.
β-Cells respond to peripheral insulin resistance by first increasing circulating insulin during diabetes. Islet remodeling supports this compensation, but its drivers remain poorly understood. Infiltrating macrophages have been implicated in late-stage type 2 diabetes, but relatively little is known on islet resident macrophages, especially during compensatory hyperinsulinemia. We hypothesized that islet resident macrophages would contribute to islet vascular remodeling and hyperinsulinemia during diabetes, the failure of which results in a rapid progression to frank diabetes. We used chemical (clodronate), genetics (CD169-diphtheria toxin receptor mice), or antibody-mediated (colony-stimulating factor 1 receptor α) macrophage ablation methods in diabetic (db/db) and diet-induced models of compensatory hyperinsulinemia to investigate the role of macrophages in islet remodeling. We transplanted islets devoid of macrophages into naïve diabetic mice and assessed the impact on islet vascularization. With the use of the above methods, we showed that macrophage depletion significantly and consistently compromised islet remodeling in terms of size, vascular density, and insulin secretion capacity. Depletion of islet macrophages reduced VEGF-A secretion in both human and mouse islets ex vivo, and this functionally translated to delayed revascularization upon transplantation in vivo. We revealed that islet resident macrophages were associated with islet remodeling and increased insulin secretion during diabetes. This suggests utility in harnessing islet macrophages during this phase to promote islet vascularization, remodeling, and insulin secretion.