Quantitative nuclear magnetic resonance imaging (MRI) has been considered a promising non-invasive tool for monitoring therapeutic essays in small size mouse models of muscular dystrophies. Here, we combined MRI (anatomical images and transverse relaxation time constant—T2—measurements) to texture analyses in the study of four mouse strains covering a wide range of dystrophic phenotypes. Two still unexplored mouse models of muscular dystrophies were analyzed: The severely affected Largemyd mouse and the recently generated and worst double mutant mdx/Largemyd mouse, as compared to the mildly affected mdx and normal mice. The results were compared to histopathological findings. MRI showed increased intermuscular fat and higher muscle T2 in the three dystrophic mouse models when compared to the wild-type mice (T2: mdx/Largemyd: 37.6±2.8 ms; mdx: 35.2±4.5 ms; Largemyd: 36.6±4.0 ms; wild-type: 29.1±1.8 ms, p<0.05), in addition to higher muscle T2 in the mdx/Largemyd mice when compared to mdx (p<0.05). The areas with increased muscle T2 in the MRI correlated spatially with the identified histopathological alterations such as necrosis, inflammation, degeneration and regeneration foci. Nevertheless, muscle T2 values were not correlated with the severity of the phenotype in the 3 dystrophic mouse strains, since the severely affected Largemyd showed similar values than both the mild mdx and worst mdx/Largemyd lineages. On the other hand, all studied mouse strains could be unambiguously identified with texture analysis, which reflected the observed differences in the distribution of signals in muscle MRI. Thus, combined T2 intensity maps and texture analysis is a powerful approach for the characterization and differentiation of dystrophic muscles with diverse genotypes and phenotypes. These new findings provide important noninvasive tools in the evaluation of the efficacy of new therapies, and most importantly, can be directly applied in human translational research.
Microglia, the sentinels of the central nervous system, are responsible for the surveillance and the innate defense against pathogen or danger/damage-associated molecular patterns. The response is fine-tuned to restrain pro-inflammatory responses, preserving neighboring cells. At the injured area, microglia temporarily shift to a pro-inflammatory phenotype (M1), followed by anti-inflammatory (M2) phenotypes. The duration and magnitude of the pro-inflammatory phase are finely regulated to avoid unnecessary loss of brain tissue. The present study shows that melatonin synthesized by microglia plays a key role in the transformation of M1 to M2 phenotypes. In a mixed rat cerebellar glia culture, the percentage of activated microglia did not vary significantly with the treatments, while the role of melatonin synthesized by microglia in promoting the end of the pro-inflammatory phase, and the initiation of the regulatory/phagocytic phases was inferred by using pharmacological tools. Total microglia were identified by the expression of CD11b/c, whereas positive to IBA-1 microglia were considered activated, independent of the phenotype. M1 and M2 phenotypes were distinguished with the biomarkers NOS-2 and ARG-1, as these enzymes act on the same substrate (L-arginine), producing pro-inflammatory (NO) or anti-inflammatory (polyamines and proline) end products, respectively. Luzindole, a blocker of melatonin receptors, impaired the conversion of M1 to M2 phenotypes and zymosan phagocytosis. Thus, melatonin content synthesized by cerebellar microglia determines the extension of the pro-inflammatory phase of defense response.
The lipophilic secretory cavities observed in the leaf of Porophyllum lanceolatum (Asteraceae) are scattered throughout the lamina and around its crenate margins. In the young leaf the cavities are initiated, and their development completed, while the surrounding tissues are still at early stages of differentiation. The cavity lumen has a lysigenous origin. Cell lysis, expansion of the developing leaf and, probably, the pressure exerted by the accumulation of secretory products, are believed to account for the gradual enlargement of the lumen. Concomitantly with ctll disintegration, which occurs throughout development, divisions take place in all cells of the gland. A mature cavity has a multilayered epithelium. Histochemical tests for RNA, proteins, phenolics and pectic polysaccharides revealed intense staining of the content of the epithelial cells in the early stages of cavity development, and a decrease in staining towards its maturity. Staining for lipids is intense in all developmental stages. Tests on the material observed in the lumen of mature cavities, show positive results for lipids, pectic polysaccharides and phenolics.