The Asian tiger mosquito (Aedes albopictus) is an important vector of a number of arboviruses, including Zika (ZIKV), dengue (DENV), and chikungunya (CHIKV) viruses, and has recently expanded its range in the eastern United States to southern New England and New York. Given the recent establishment and proliferation of Ae. albopictus in this region and the increasing amount of international travel between the United States and endemic countries, there is a need to elucidate the public health risk posed by this mosquito species in the Northeast. Accordingly, we evaluated the competence of four Ae. albopictus populations from Connecticut and New York, for two strains each of ZIKV, DENV serotype 2 (DENV-2), and CHIKV, currently circulating in the Americas, to evaluate the local transmission risk by this vector. We found that local Ae. albopictus populations are susceptible to infection by all three viruses but are most capable of transmitting CHIKV. Variation in competence was observed for ZIKV and CHIKV, driven by the virus strains and mosquito population, whereas competence was more homogeneous for the DENV-2 strains under evaluation. These results suggest that under optimal circumstances, Ae. albopictus could support localized transmission of these viruses and emphasize the importance of maintaining mosquito surveillance and control programs to suppress Ae. albopictus populations and limit further range expansion of this species.
The emergence of recombinant viruses is a threat to public health, as recombination may integrate variant-specific features that together result in escape from treatment or immunity. The selective advantages of recombinant SARS-CoV-2 isolates over their parental lineages remain unknown. We identified a Delta-Omicron (AY.45-BA.1) recombinant in an immunosuppressed transplant recipient treated with monoclonal antibody Sotrovimab. The single recombination breakpoint is located in the spike N-terminal domain adjacent to the Sotrovimab binding site. While Delta and BA.1 are sensitive to Sotrovimab neutralization, the Delta-Omicron recombinant is highly resistant. To our knowledge, this is the first described instance of recombination between circulating SARS-CoV-2 variants as a functional mechanism of resistance to treatment and immune escape.
ABSTRACT In the earliest days of the COVID-19 pandemic, the collection of dried blood spots (DBS) enabled public health laboratories to undertake population-scale seroprevalence studies used to estimate rates of SARS-CoV-2 exposure. With SARS-CoV-2 seropositivity levels now estimated to exceed 94% in the United States, attention has turned to using DBS to assess neutralizing antibodies within cohorts of interest. With this goal in mind, we generated contrived DBS (cDBS) and whole blood-derived DBS from convalescent and vaccinated individuals and subjected DBS eluates to a battery of assays, including a SARS-CoV-2 multiplexed microsphere immunoassay (MIA), a receptor binding domain (RBD)-human ACE2 inhibition assay (iACE2), a cell-based pseudovirus neutralization assay, and real-time PCR-based surrogate neutralization assay (NAB-Sure). The DBS results were benchmarked against paired serum samples tested in a clinically validated SARS-CoV-2 plaque reduction neutralization titer (PRNT) assay. The results of an 8-plex MIA and NAB-Sure assays demonstrated highly significant correlations with PRNT values when evaluated with a panel of 86 paired serum–DBS samples. Both the MIA and NAB-Sure are adaptable to automated liquid handlers for high-throughput capacity. While neutralizing assays were limited to the ancestral SARS-CoV-2 WA1, this study nonetheless represents an important proof of concept demonstrating the potential utility of DBS as a biospecimen type for use in assessing immunity to SARS-CoV-2 at the community and population levels. IMPORTANCE SARS-CoV-2 variants of concern continue to circulate globally and remain a serious health threat to large segments of the population. From a public health standpoint, identifying vulnerable communities based on immune status is critical in terms of vaccine booster recommendations. In this report, we investigated the utility of dried blood spots (DBS) as a biospecimen type from which to estimate SARS-CoV-2 neutralizing antibody titers. Using contrived and whole blood-derived DBS, we demonstrate that SARS-CoV-2 neutralizing antibodies are readily measurable in DBS eluates and correlate with plaque reduction neutralization titer (PRNT) values from paired serum samples. Moreover, several of the methods used to estimate SARS-CoV-2 neutralizing antibodies in DBS eluates are adaptable to high-throughput platforms.
Abstract Current studies of the JYNNEOS-induced neutralizing antibody response to monkeypox virus (MPXV) are limited by either short-term durability data, quantification in an endemic population, or lack of an infectious MPXV neutralization assay. We used plaque reduction neutralization test (PRNT) with authentic MPXV and vaccinia viruse (VACV) to assess antibody responses over twelve months of eight donors vaccinated with two doses of JYNNEOS. One donor previously received the ACAM2000 vaccine; seven donors were smallpox-vaccine naïve. The IgG response of the donors to VACV (L1R, B5R, and A33R) and MPXV (E8L, H3L, A35R) antigens and PRNT titers to both viruses peaked at eight weeks post-vaccination and waned thereafter in naïve donors. MPXV PRNT titers were especially low; no naïve donors produced a detectable PRNT90 titer. Our results suggest the MPXV humoral response produced by JYNNEOS is limited in naïve donors and invites further investigation into current mpox vaccination strategies and correlates of protection.
In the Western Hemisphere, Zika virus is thought to be transmitted primarily by Aedes aegypti mosquitoes. To determine the extent to which Ae. albopictus mosquitoes from the United States are capable of transmitting Zika virus and the influence of virus dose, virus strain, and mosquito species on vector competence, we evaluated multiple doses of representative Zika virus strains in Ae. aegypti and Ae. albopictus mosquitoes. Virus preparation (fresh vs. frozen) significantly affected virus infectivity in mosquitoes. We calculated 50% infectious doses to be 6.1-7.5 log 10 PFU/mL; minimum infective dose was 4.2 log 10 PFU/mL. Ae. albopictus mosquitoes were more susceptible to infection than Ae. aegypti mosquitoes, but transmission efficiency was higher for Ae. aegypti mosquitoes, indicating a transmission barrier in Ae. albopictus mosquitoes. Results suggest that, although Zika virus transmission is relatively inefficient overall and dependent on virus strain and mosquito species, Ae. albopictus mosquitoes could become major vectors in the Americas.
Abstract Eastern equine encephalitis virus (EEEV) causes a rare but severe disease in horses and humans, and is maintained in an enzootic transmission cycle between songbirds and Culiseta melanura mosquitoes. In 2019, the largest EEEV outbreak in the United States for more than 50 years occurred, centered in the Northeast. To explore the dynamics of the outbreak, we sequenced 80 isolates of EEEV and combined them with existing genomic data. We found that, like previous years, cases were driven by frequent short-lived virus introductions into the Northeast from Florida. Once in the Northeast, we found that Massachusetts was important for regional spread. We found no evidence of any changes in viral, human, or bird factors which would explain the increase in cases in 2019. By using detailed mosquito surveillance data collected by Massachusetts and Connecticut, however, we found that the abundance of Cs. melanura was exceptionally high in 2019, as was the EEEV infection rate. We employed these mosquito data to build a negative binomial regression model and applied it to estimate early season risks of human or horse cases. We found that the month of first detection of EEEV in mosquito surveillance data and vector index (abundance multiplied by infection rate) were predictive of cases later in the season. We therefore highlight the importance of mosquito surveillance programs as an integral part of public health and disease control.
JYNNEOS, a third-generation smallpox vaccine, is integral to monkeypox virus (MPXV) control efforts, but the durability of this modified vaccinia Ankara-Bavarian Nordic (MVA-BN) vaccine's effectiveness is undefined. We optimized and used a plaque reduction neutralization test (PRNT) with authentic clade IIa MPXV and vaccinia virus to assess antibody responses over 12 months in 8 donors vaccinated with 2 doses of JYNNEOS. One donor previously received the ACAM2000 vaccine; 7 donors were smallpox vaccine-naive. IgG responses of the donors to vaccinia virus (L1, B5, and A33) or MPXV (E8, H3, A35) antigens and PRNT titers to both viruses peaked at 8 weeks postvaccination and waned rapidly thereafter in naive donors. MPXV PRNT titers were especially low; no naive donors demonstrated 90% plaque reduction. These data indicate a need for improved correlates of MPXV immunity to enable MVA-BN durability studies, given that recent clinical data support MVA-BN vaccine efficacy against MPXV despite low antibody responses.
Rapid and significant range expansion of both Zika virus (ZIKV) and its Aedes vector species has resulted in ZIKV being declared a global health threat. Mean temperatures are projected to increase globally, likely resulting in alterations of the transmission potential of mosquito-borne pathogens. To understand the effect of diurnal temperature range on the vectorial capacity of Ae. aegypti and Ae. albopictus for ZIKV, longevity, blood-feeding and vector competence were assessed at two temperature regimes following feeding on infectious blood meals. Higher temperatures resulted in decreased longevity of Ae. aegypti [Log-rank test, χ2, df 35.66, 5, P < 0.001] and a decrease in blood-feeding rates of Ae. albopictus [Fisher's exact test, P < 0.001]. Temperature had a population and species-specific impact on ZIKV infection rates. Overall, Ae. albopictus reared at the lowest temperature regime demonstrated the highest vectorial capacity (0.53) and the highest transmission efficiency (57%). Increased temperature decreased vectorial capacity across groups yet more significant effects were measured with Ae. aegypti relative to Ae. albopictus. The results of this study suggest that future increases in temperature in the Americas could significantly impact vector competence, blood-feeding and longevity, and potentially decrease the overall vectorial capacity of Aedes mosquitoes in the Americas.