During operations, medical doctors use various medical equipment that is mainly manufactured from metallic materials. Bipolar forceps are used for electrosurgery, especially neurosurgery. Bipolar forceps are utilized for cutting, inosculation, and quick hemostasis with electricity. Because bipolar tips reach a high temperature, the tissue that makes contact with the tips and nearby tissue is damaged. In addition, operations are delayed because of the need to wash or change equipment because of tissue adhering to the bipolar tips. Herein, we designed bipolar forceps with antiadhesion properties by coating them with a superhydrophobic material. We compared the effect of the coating by using bipolar forceps in different tissue samples and target areas, which reached different surface temperatures. Furthermore, the effect of the surface wettability was investigated. The temperature measurements and adhesion force measurements indicated that coating of the sample significantly limited the temperature increase and reduced the adhesion force. We demonstrated that the antiadhesion properties depended on the change in the surface tension of the hydrophobic material coating. These coatings are promising for decreasing tissue adhesion on metallic devices and decreasing collateral heat damage to the tissue.
The hydrogen solubility of TiO2–SiO2–FeO and the TiO2–SiO2–MnO welding-type flux systems have been studied to identify and compare the hydrogen dissolution behavior in molten welding fluxes at high temperatures of 1823 K in a wide range of compositions. The dependence of the water vapor pressure and the hydrogen solubility showed a slope of 1/2 suggesting thermodynamic equilibrium was obtained. For an acidic slag composition, the hydrogen was found to be incorporated within the silicate network structure and decreased with higher TiO2 additions due to the dilution effect of SiO2 and subsequent decrease in incorporation sites. The additions of FeO and MnO, which acts as a basic component to the slag system, provided free oxygen ions, and decreased the incorporation sites for hydrogen dissolution. FTIR analysis of as quenched molten flux samples showed more pronounced bands for Si–OH bending vibrations when hydrogen solubility increased. For a basic slag composition, the hydrogen existed as a free hydroxyl and the addition of basic components such as FeO and MnO to the slag system increased the hydrogen solubility in the molten slag. Furthermore, it was observed that the hydrogen solubility was slightly lower for FeO than MnO containing fluxes.
In recent years, wearable and flexible sensors have attracted considerable research interest and effort owing to their broad application prospects in wearable devices, robotics, health monitoring, and so on. High-sensitivity and low-cost pressure sensors are the primary requirement in practical application. Herein, a convenient and low-cost process to fabricate a bionic fish-scale structure poly(dimethylsiloxane) (PDMS) film via air/water interfacial formation technique is presented. High-sensitivity flexible pressure sensors can be constructed by assembling conductive films of graphene nanosheets into a microstructured film. Thanks to the unique fish-scale structures of PDMS films, the prepared pressure sensor shows excellent performance with high sensitivity (-70.86% kPa-1). In addition, our pressure sensors can detect weak signals, such as wrist pulses, respiration, and voice vibrations. Moreover, the whole process of pressure sensor preparation is cost-effective, eco-friendly, and controllable. The results indicate that the prepared pressure sensor has a profitable and efficient advantage in future applications for monitoring human physiological signals and sensing subtle touch, which may broaden its potential applications in wearable devices.
The compositional effect of NaF and CaO/SiO2 on the hydrogen solubility in the NaF–CaO–SiO2–FeOt welding flux system at 1823 K is presented. At a CaO/SiO2 of 1.3, higher NaF decreased the hydrogen solubility and at a CaO/SiO2 of 1.5, higher NaF had relatively little effect on the hydrogen solubility in the flux. The hydrogen solubility with CaO/SiO2 showed a parabolic behavior showing a minimum near unit basicity and increasing with higher basicity. FTIR (Fourier transform infra red) and Raman spectroscopy of as-quenched flux samples showed the addition of NaF and higher CaO/SiO2 depolymerized the flux structure. At low and intermediate basicities from 0.9 to 1.3, higher NaF decreased the incorporated hydroxyl sites of Si(OH) and FeO(OH), which correlates well to lower hydrogen values.