Secondary cell wall (SCW) is an important industrial raw material for pulping, papermaking, construction, lumbering, textiles and potentially for biofuel production. The process of SCW thickening of cotton fibers lays down the cellulose that will constitute the bulk (up to 96%) of the fiber at maturity. In this study, a gene encoding a MYB-domain protein was identified in cotton (Gossypium hirsutum) and designated as GhMYBL1. Quantitative real-time polymerase chain reaction (RT-PCR) analysis revealed that GhMYBL1 was specifically expressed in cotton fibers at the stage of secondary wall deposition. Further analysis indicated that this protein is a R2R3-MYB transcription factor, and is targeted to the cell nucleus. Overexpression of GhMYBL1 in Arabidopsis affected the formation of SCW in the stem xylem of the transgenic plants. The enhanced SCW thickening also occurred in the interfascicular fibers, xylary fibers and vessels of the GhMYBL1-overexpression transgenic plants. The expression of secondary wall-associated genes, such as CesA4, CesA7, CesA8, PAL1, F5H and 4CL1, were upregulated, and consequently, cellulose and lignin biosynthesis were enhanced in the GhMYBL1 transgenic plants. These data suggested that GhMYBL1 may participate in modulating the process of secondary wall biosynthesis and deposition of cotton fibers.
Cancer stem cells (CSCs) in hepatocellular carcinoma (HCC) are frequently resistant to current therapeutic regimens and therefore responsible for tumor recurrence. Previous studies have reported that expression levels of dysadherin in CSCs may be used as a prognostic indicator, which is also responsible for treatment failure and poor survival rates. The present study analyzed the association of enhanced dysadherin levels with drug resistance and evasion of apoptosis in human HCC SP cells. An SP of 3.7% was isolated from human HCC cells using fluorescence‑activated cell sorting. These SP cells displayed elevated levels of dysadherin and stemness proteins as well as high resistance to chemotherapeutic drugs and apoptosis. In order to reveal the possible link between dysadherin levels and tumorigenesis of SP cells, small interfering RNA technology was used to knockdown the expression of dysadherin in SP cells. Of note, the siRNA‑transfected SP cells showed significantly reduced levels of stemness proteins, and were more sensitive to DNA‑targeting drugs and apoptotic cell death as compared to non‑transfected cells. Furthermore, in vivo experiments in NON/SCID mice indicated that dysadherin‑expressing SP cells were highly tumorigenic, as they were able to induce tumor growth. The SP cell‑derived tumor tissues in turn showed elevated dysadherin levels. The results of the present study therefore suggested that knockdown of dysadherin suppressed the tumorigenic properties of cancer stem-like SP cells. Hence, dysadherin is a valuable potential target for the development of novel anti-cancer drugs.
Dinoflagellates are a group of unicellular organisms that are a major component of aquatic eukaryotes and important contributors to marine primary production. Nevertheless, many dinoflagellates are considered harmful algal bloom (HAB) species due to their detrimental environmental and human health impacts. Cyst formation is widely perceived as an adaptive strategy of cyst-forming dinoflagellates in response to adverse environmental conditions. Dinoflagellate cysts play critical roles in bloom dynamics. However, our insight into the underlying molecular basis of encystment is still limited. To investigate the molecular processes regulating encystment in dinoflagellates, transcriptome and metabolome investigations were performed on cold and darkness-induced pellicle cysts of Scrippsiella trochoidea.No significant transcriptional response was observed at 2 h; however, massive transcriptome and metabolome reprogramming occurred at 5 h and in pellicle cysts. The gene-to-metabolite network demonstrated that the initial transformation from vegetative cells into pellicle cysts was highly energy demanding through the activation of catabolism, including glycolysis, β-oxidation, TCA cycle and oxidative phosphorylation, to cope with cold-darkness-induced stress. However, after transformation into pellicle cysts, the metabolism was greatly reduced, and various sugars, polyunsaturated fatty acids and amino acids accumulated to prolong survival. The identification of 56 differentially expressed genes (DEGs) related to signal transduction indicated that S. trochoidea received a cold-darkness signal that activated multiple signal transduction pathways, leading to encystment. The elevated expression of genes encoding enzymes involved in ROS stress suggested that pellicle cysts respond to increased oxidative stress. Several cell cycle-related genes were repressed. Intriguingly, 11 DEGs associated with sexual reproduction suggested that pellicle cysts (or some portion thereof) may be a product of sexual reproduction.This study provides the first transcriptome and metabolome analyses conducted during the encystment of S. trochoidea, an event that requires complex regulatory mechanisms and impacts on population dynamics. The results reveal comprehensive molecular regulatory processes underlying life cycle regulation in dinoflagellates involving signal transduction, gene expression and metabolite profile, which will improve our ability to understand and monitor dinoflagellate blooms.
Abstract Anthocyanin accumulation is transcriptionally regulated by the MYB–bHLH–WD40 complex. Light is indispensable for anthocyanin accumulation, and light-inducible MYB and HY5 were considered to promote anthocyanin accumulation in many fruits. Whether and how light-inducible bHLH transcription factor and HY5 regulate anthocyanin synthesis in strawberry is unknown. In this study, we identified a bHLH transcription factor, FvbHLH9, which was induced by light as well as FvHY5, and found that, similar to FvHY5, the transient overexpression and interference FvbHLH9 in strawberry fruits can promote and decrease anthocyanin accumulation, respectively, indicating FvbHLH9 functions as a positive regulator of anthocyanin biosynthesis. Furthermore, we confirmed that both FvHY5 and FvbHLH9 specifically bind to the promoter region of some key enzyme genes, including FvDFR, and the expression of FvDFR was activated through the heterodimer formation between FvHY5 and FvbHLH9. Finally, we confirmed that FvbHLH9-promoted anthocyanin accumulation is dependent on HY5–bHLH heterodimerisation in Arabidopsis. Our findings provide insights into a mechanism involving the synergistic regulation of light-dependent coloration and anthocyanin biosynthesis via a HY5–bHLH heterodimer formed by the interaction of FvHY5 and FvbHLH9 in strawberry fruits.