Highlights•C1q refines spinal sensory-motor circuits during normal development•Upregulated C1q tags SMA synapses for elimination via classical cascade and microglia•Pharmacological inhibition of C1q or depletion of microglia confer benefit in SMA mice•C1q deletion results in an excessive number of synapses, leading to behavioral deficitsSummaryMovement is an essential behavior requiring the assembly and refinement of spinal motor circuits. However, the mechanisms responsible for circuit refinement and synapse maintenance are poorly understood. Similarly, the molecular mechanisms by which gene mutations cause dysfunction and elimination of synapses in neurodegenerative diseases that occur during development are unknown. Here, we demonstrate that the complement protein C1q is required for the refinement of sensory-motor circuits during normal development, as well as for synaptic dysfunction and elimination in spinal muscular atrophy (SMA). C1q tags vulnerable SMA synapses, which triggers activation of the classical complement pathway leading to microglia-mediated elimination. Pharmacological inhibition of C1q or depletion of microglia rescues the number and function of synapses, conferring significant behavioral benefit in SMA mice. Thus, the classical complement pathway plays critical roles in the refinement of developing motor circuits, while its aberrant activation contributes to motor neuron disease.Graphical abstract
Locomotion is a complex behavior required for animal survival. Vertebrate locomotion depends on spinal interneurons termed the central pattern generator (CPG), which generates activity responsible for the alternation of flexor and extensor muscles and the left and right side of the body. It is unknown whether multiple or a single neuronal type is responsible for the control of mammalian locomotion. Here, we show that ventral spinocerebellar tract neurons (VSCTs) drive generation and maintenance of locomotor behavior in neonatal and adult mice. Using mouse genetics, physiological, anatomical, and behavioral assays, we demonstrate that VSCTs exhibit rhythmogenic properties and neuronal circuit connectivity consistent with their essential role in the locomotor CPG. Importantly, optogenetic activation and chemogenetic silencing reveals that VSCTs are necessary and sufficient for locomotion. These findings identify VSCTs as critical components for mammalian locomotion and provide a paradigm shift in our understanding of neural control of complex behaviors.
Highlights•SMN deficiency induces early p53 activation in vulnerable SMA motor neurons•Inhibition of p53 prevents motor neuron degeneration in SMA mice•p53S18 phosphorylation selectively marks degenerating SMA motor neurons•Amino-terminal phosphorylation of p53 is required for motor neuron degenerationSummaryThe hallmark of spinal muscular atrophy (SMA), an inherited disease caused by ubiquitous deficiency in the SMN protein, is the selective degeneration of subsets of spinal motor neurons. Here, we show that cell-autonomous activation of p53 occurs in vulnerable but not resistant motor neurons of SMA mice at pre-symptomatic stages. Moreover, pharmacological or genetic inhibition of p53 prevents motor neuron death, demonstrating that induction of p53 signaling drives neurodegeneration. At late disease stages, however, nuclear accumulation of p53 extends to resistant motor neurons and spinal interneurons but is not associated with cell death. Importantly, we identify phosphorylation of serine 18 as a specific post-translational modification of p53 that exclusively marks vulnerable SMA motor neurons and provide evidence that amino-terminal phosphorylation of p53 is required for the neurodegenerative process. Our findings indicate that distinct events induced by SMN deficiency converge on p53 to trigger selective death of vulnerable SMA motor neurons.Graphical abstract
Movement is executed through the balanced action of excitatory and inhibitory neurotransmission in motor circuits of the spinal cord. Short-term perturbations in one of the two types of transmission are counteracted by homeostatic changes of the opposing type. Prolonged failure to balance excitatory and inhibitory drive results in dysfunction at the single neuron, as well as neuronal network levels. However, whether dysfunction in one or both types of neurotransmission leads to pathogenicity in neurodegenerative diseases characterized by select synaptic deficits is not known. Here, we used mouse genetics, functional assays, morphological methods, and viral-mediated approaches to uncover the pathogenic contribution of unbalanced excitation-inhibition neurotransmission in a mouse model of spinal muscular atrophy (SMA). We show that vulnerable motor circuits in the SMA spinal cord fail to respond homeostatically to the reduction of excitatory drive and instead increase inhibition. This imposes an excessive burden on motor neurons and further restricts their recruitment to activate muscle contraction. Importantly, genetic or pharmacological reduction of inhibitory synaptic drive improves neuronal function and provides behavioural benefit in SMA mice. Our findings identify the lack of excitation-inhibition homeostasis as a major maladaptive mechanism in SMA, by which the combined effects of reduced excitation and increased inhibition diminish the capacity of premotor commands to recruit motor neurons and elicit muscle contractions.
Dysfunction of neuronal circuits is an important determinant of neurodegenerative diseases. Synaptic dysfunction, death, and intrinsic activity of neurons are thought to contribute to the demise of normal behavior in the disease state. However, the interplay between these major pathogenic events during disease progression is poorly understood. Spinal muscular atrophy (SMA) is a neurodegenerative disease caused by a deficiency in the ubiquitously expressed protein SMN and is characterized by motor neuron death, skeletal muscle atrophy, as well as dysfunction and loss of both central and peripheral excitatory synapses. These disease hallmarks result in an overall reduction of neuronal activity in the spinal sensory-motor circuit. Here, we show that increasing neuronal activity by chronic treatment with the FDA-approved potassium channel blocker 4-aminopyridine (4-AP) improves motor behavior in both sexes of a severe mouse model of SMA. 4-AP restores neurotransmission and number of proprioceptive synapses and neuromuscular junctions (NMJs), while having no effects on motor neuron death. In addition, 4-AP treatment with pharmacological inhibition of p53-dependent motor neuron death results in additive effects, leading to full correction of sensory-motor circuit pathology and enhanced phenotypic benefit in SMA mice. Our in vivo study reveals that 4-AP-induced increase of neuronal activity restores synaptic connectivity and function in the sensory-motor circuit to improve the SMA motor phenotype.SIGNIFICANCE STATEMENT Spinal muscular atrophy (SMA) is a neurodegenerative disease, characterized by synaptic loss, motor neuron death, and reduced neuronal activity in spinal sensory-motor circuits. However, whether these are parallel or dependent events is unclear. We show here that long-term increase of neuronal activity by the FDA-approved drug 4-aminopyridine (4-AP) rescues the number and function of central and peripheral synapses in a SMA mouse model, resulting in an improvement of the sensory-motor circuit and motor behavior. Combinatorial treatment of pharmacological inhibition of p53, which is responsible for motor neuron death and 4-AP, results in additive beneficial effects on the sensory-motor circuit in SMA. Thus, neuronal activity restores synaptic connections and improves significantly the severe SMA phenotype.
Neuromodulation by serotonin regulates the activity of neuronal networks responsible for a wide variety of essential behaviours. Serotonin (or 5-HT) typically activates metabotropic G protein-coupled receptors, which in turn initiate second messenger signalling cascades and induce short and long-lasting behavioural effects. Serotonin is intricately involved in the production of locomotor activity and gait control for different motor behaviours. Although dysfunction of serotonergic neurotransmission has been associated with mood disorders and spasticity after spinal cord injury, whether and to what extent such dysregulation is implicated in movement disorders has not been firmly established. Here, we investigated whether serotonergic neuromodulation is affected in spinal muscular atrophy (SMA), a neurodegenerative disease caused by ubiquitous deficiency of the SMN protein. The hallmarks of SMA are death of spinal motor neurons, muscle atrophy and impaired motor control, both in human patients and mouse models of disease. We used a severe mouse model of SMA, that closely recapitulates the severe symptoms exhibited by type I SMA patients, the most common and most severe form of the disease. Together, with mouse genetics, optogenetics, physiology, morphology and behavioural analysis, we report severe dysfunction of serotonergic neurotransmission in the spinal cord of SMA mice, both at early and late stages of the disease. This dysfunction is followed by reduction of 5-HT synapses on vulnerable motor neurons. We demonstrate that motor neurons innervating axial and trunk musculature are preferentially affected, suggesting a possible cause for the proximo-distal progression of disease, and raising the possibility that it may underlie scoliosis in SMA patients. We also demonstrate that the 5-HT dysfunction is caused by SMN deficiency in serotonergic neurons in the raphe nuclei of the brainstem. The behavioural significance of the dysfunction in serotonergic neuromodulation is underlined by inter-limb discoordination in SMA mice, which is ameliorated when selective restoration of SMN in 5-HT neurons is achieved by genetic means. Our study uncovers an unexpected dysfunction of serotonergic neuromodulation in SMA and indicates that, if normal function is to be restored under disease conditions, 5-HT neuromodulation should be a key target for therapeutic approaches.
Abstract Spinal muscular atrophy (SMA) is a neurodegenerative disease characterized by a varying degree of severity that correlates with the reduction of SMN protein levels. Motor neuron degeneration and skeletal muscle atrophy are hallmarks of SMA, but it is unknown whether other mechanisms contribute to the spectrum of clinical phenotypes. Here, through a combination of physiological and morphological studies in mouse models and SMA patients, we identify dysfunction and loss of proprioceptive sensory synapses as key signatures of SMA pathology. We demonstrate that Type 3 SMA patients exhibit impaired proprioception, and their proprioceptive synapses are dysfunctional as measured by the neurophysiological test of the Hoffmann reflex (H-reflex). We further show moderate loss of spinal motor neurons along with reduced excitatory afferent synapses and altered potassium channel expression in motor neurons from Type 1 SMA patients. These are conserved pathogenic events found in both severely affected patients and mouse models. Lastly, we report that improved motor function and fatigability in ambulatory Type 3 SMA patients and mouse models treated with SMN-inducing drugs correlate with increased function of sensory-motor circuits that can be accurately captured by the H-reflex assay. Thus, sensory synaptic dysfunction is a clinically relevant event in SMA, and the H-reflex is a suitable assay to monitor disease progression and treatment efficacy of motor circuit pathology.