In the present paper, an aerodynamic investigation of a high-speed train is performed. In the first section of this article, a generic high-speed train against a turbulent flow is simulated, numerically. The Reynolds-Averaged Navier-Stokes (RANS) equations combined with the turbulence model are applied to solve incompressible turbulent flow around a high-speed train. Flow structure, velocity and pressure contours and streamlines at some typical wind directions are the most important results of this simulation. The maximum and minimum values are specified and discussed. Also, the pressure coefficient for some critical points on the train surface is evaluated. In the following, the wind direction influence the aerodynamic key parameters as drag, lift, and side forces at the mentioned wind directions are analyzed and compared. Moreover, the effects of velocity changes (50, 60, 70, 80 and 90 m/s) are estimated and compared on the above flow and aerodynamic parameters. In the second section of the paper, various data-driven methods including Gene Expression Programming (GEP), Gaussian Process Regression (GPR), and random forest (RF), are applied for predicting output parameters. So, drag, lift, and side forces and also minimum and a maximum of pressure coefficients for mentioned wind directions and velocity are predicted and compared using statistical parameters. Obtained results indicated that RF in all coefficients of wind direction and most coefficients of free stream velocity provided the most accurate predictions. As a conclusion, RF may be recommended for the prediction of aerodynamic coefficients.
Solar energy is a renewable resource of energy that is broadly utilized and has the least emissions among renewable energies. In this study, machine learning methods of artificial neural networks (ANNs), least squares support vector machines (LSSVM), and neuro-fuzzy are used for advancing prediction models for the thermal performance of a photovoltaic-thermal solar collector (PV/T). In the proposed models, the inlet temperature, flow rate, heat, solar radiation, and the sun heat have been considered as the inputs variables. Data set has been extracted through experimental measurements from a novel solar collector system. Different analyses are performed to examine the credibility of the introduced approaches and evaluate their performance. The proposed LSSVM model outperformed ANFIS and ANNs models. LSSVM model is reported suitable when the laboratory measurements are costly and time-consuming, or achieving such values requires sophisticated interpretations.
Identification and management of the groundwater quality are of utmost importance for maintaining freshwater resources in arid and semi-arid areas, which is essential for sustainable development. Based on the quality of the groundwater in various areas, local policymakers and water resource managers can allocate the usage of resources for either drinking or agricultural purposes. This research aims to identify suitable areas of water pumping for drinking and agricultural harvest in the Tabriz aquifer, located in East Azerbaijan province, northwest Iran. A groundwater compatibility study was conducted by analyzing Electrical conductivity (EC), total dissolved solids (TDS), Chloride (Cl), Calcium (Ca), Magnesium (Mg), Sodium (Na), Potassium (K), Sulfate (SO4), Total hardness (TH), Bicarbonate (HCO3), pH, carbonate (CO3), the and Sodium Adsorption Ratio (SAR) obtained from 39 wells in the time period from 2003 to 2014. The Water Quality Index (WQI) and irrigation water quality (IWQ) index are respectively utilized due to their high importance in identifying the quality of water resources for irrigation and drinking purposes. The WQI index zoning for drinking classified water as excellent, good, or poor. The study concludes that most drinking water harvested for urban and rural areas is ‘excellent water’ or ‘good water’. The IWQ index average for the study area is reported to be in the range of 25.9 to 34.55. The results further revealed that about 37 percent (296 km2) of groundwater has high compatibility, and 63 percent of the study area (495 km2) has average compatibility for agricultural purposes. The trend of IWQ and WQI indexes demonstrates that groundwater quality has been declining over time.
Assessing skeletal age is a subjective and tedious examination process. Hence, automated assessment methods have been developed to replace manual evaluation in medical applications. In this study, a new fully automated method based on content-based image retrieval and using extreme learning machines (ELM) is designed and adapted to assess skeletal maturity. The main novelty of this approach is it overcomes the segmentation problem as suffered by existing systems. The estimation results of ELM models are compared with those of genetic programming (GP) and artificial neural networks (ANNs) models. The experimental results signify improvement in assessment accuracy over GP and ANN, while generalization capability is possible with the ELM approach. Moreover, the results are indicated that the ELM model developed can be used confidently in further work on formulating novel models of skeletal age assessment strategies. According to the experimental results, the new presented method has the capacity to learn many hundreds of times faster than traditional learning methods and it has sufficient overall performance in many aspects. It has conclusively been found that applying ELM is particularly promising as an alternative method for evaluating skeletal age.
The most common index for representing structural condition of the pavement is the structural number. The current procedure for determining structural numbers involves utilizing falling weight deflectometer and ground-penetrating radar tests, recording pavement surface deflections, and analyzing recorded deflections by back-calculation manners. This procedure has two drawbacks: 1. falling weight deflectometer and ground-penetrating radar are expensive tests, 2. back-calculation ways has some inherent shortcomings compared to exact methods as they adopt a trial and error approach. In this study, three machine learning methods entitled Gaussian process regression, m5p model tree, and random forest used for the prediction of structural numbers in flexible pavements. Dataset of this paper is related to 759 flexible pavement sections at Semnan and Khuzestan provinces in Iran and includes “structural number” as output and “surface deflections and surface temperature” as inputs. The accuracy of results was examined based on three criteria of R, MAE, and RMSE. Among the methods employed in this paper, random forest is the most accurate as it yields the best values for above criteria (R=0.841, MAE=0.592, and RMSE=0.760). The proposed method does not require to use ground penetrating radar test, which in turn reduce costs and work difficulty. Using machine learning methods instead of back-calculation improves the calculation process quality and accuracy.
Prediction models in mobility and transportation maintenance systems have been dramatically improved by using machine learning methods. This paper proposes novel machine learning models for an intelligent road inspection. The traditional road inspection systems based on the pavement condition index (PCI) are often associated with the critical safety, energy and cost issues. Alternatively, the proposed models utilize surface deflection data from falling weight deflectometer (FWD) tests to predict the PCI. Machine learning methods are the single multi-layer perceptron (MLP) and radial basis function (RBF) neural networks as well as their hybrids, i.e., Levenberg–Marquardt (MLP-LM), scaled conjugate gradient (MLP-SCG), imperialist competitive (RBF-ICA), and genetic algorithms (RBF-GA). Furthermore, the committee machine intelligent systems (CMIS) method was adopted to combine the results and improve the accuracy of the modeling. The results of the analysis have been verified through using four criteria of average percent relative error (APRE), average absolute percent relative error (AAPRE), root mean square error (RMSE) and standard error (SE). The CMIS model outperforms other models with the promising results of APRE = 2.3303, AAPRE = 11.6768, RMSE = 12.0056 and SD = 0.0210.
Audio streams, such as news broadcasting, meeting rooms, and special video comprise sound from an extensive variety of sources. The detection of audio events including speech, coughing, gunshots, etc. leads to intelligent audio event detection (AED). With substantial attention geared to AED for various types of applications, such as security, speech recognition, speaker recognition, home care, and health monitoring, scientists are now more motivated to perform extensive research on AED. The deployment of AED is actually a more complicated task when going beyond exclusively highlighting audio events in terms of feature extraction and classification in order to select the best features with high detection accuracy. To date, a wide range of different detection systems based on intelligent techniques have been utilized to create machine learning-based audio event detection schemes. Nevertheless, the preview study does not encompass any state-of-the-art reviews of the proficiency and significances of such methods for resolving audio event detection matters. The major contribution of this work entails reviewing and categorizing existing AED schemes into preprocessing, feature extraction, and classification methods. The importance of the algorithms and methodologies and their proficiency and restriction are additionally analyzed in this study. This research is expanded by critically comparing audio detection methods and algorithms according to accuracy and false alarms using different types of datasets.