Prostate cancer is the fifth leading cause of cancer-related death among men with the majority of deaths linked to metastatic disease. Accumulating clinical data have confirmed the substantial survival benefit of the addition of docetaxel or androgen signaling inhibitors to androgen deprivation therapy for the treatment of metastatic castration-sensitive prostate cancer (mCSPC). Apalutamide, a next-generation androgen receptor inhibitor, has recently been shown to provide an added survival benefit in the treatment of mCSPC and consequently approved for this indication. This review summarizes the body of evidence with regards to the preclinical activity and clinical efficacy of apalutamide with a specific focus on its efficacy in the treatment of mCSPC.
Metastatic prostate cancer remains incurable. Though significant progress has been made in the field, the search for agents that improve outcomes for patients is ongoing. Several clinical trials have explored the benefit of combining PARP inhibitors (PARPi) with androgen receptor pathway inhibitors (ARPIs) for metastatic castrate resistant prostate cancer (mCRPC), especially those cancers with alterations in homologous recombination repair (HRR) genes. Niraparib, a highly selective inhibitor of PARP1 and PARP2, has been shown to confer a radiographic progression-free survival benefit in the treatment of mCRPC with HRR-associated gene alterations, particularly BRCA1 and BRCA2 (BRCA1/2), when combined with abiraterone acetate plus prednisolone (AAP). This combination has recently been approved in the USA, Canada and Europe for patients with mCRPC and a BRCA1/2 gene mutation. This review summarizes the evidence with regards to the pharmacologic activity and clinical efficacy of niraparib with a specific focus on its efficacy in combination with AAP in mCRPC patients with HRR alterations.
Peroxisome proliferator–activated receptors (PPARs; PPAR-α, PPAR-δ, and PPAR-γ) comprise a family of nuclear receptors that sense fatty acid levels and translate this information into altered gene transcription. Previously, it was reported that treatment of mice with a synthetic ligand activator of PPAR-δ, GW0742, ameliorates experimental autoimmune encephalomyelitis (EAE), indicating a possible role for this nuclear receptor in the control of central nervous system (CNS) autoimmune inflammation. We show that mice deficient in PPAR-δ (PPAR-δ−/−) develop a severe inflammatory response during EAE characterized by a striking accumulation of IFN-γ+IL-17A− and IFN-γ+IL-17A+ CD4+ cells in the spinal cord. The preferential expansion of these T helper subsets in the CNS of PPAR-δ−/− mice occurred as a result of a constellation of immune system aberrations that included higher CD4+ cell proliferation, cytokine production, and T-bet expression and enhanced expression of IL-12 family cytokines by myeloid cells. We also show that the effect of PPAR-δ in inhibiting the production of IFN-γ and IL-12 family cytokines is ligand dependent and is observed in both mouse and human immune cells. Collectively, these findings suggest that PPAR-δ serves as an important molecular brake for the control of autoimmune inflammation.