Diffuse large B-cell lymphomas (DLBCLs) and follicular lymphoma (FL) are the most common subtypes of B-cell non-Hodgkin’s lymphomas in adults. Histologic transformation of FL to DLBCL (TFL) occurs in approximately 15% of patients and is generally associated with a poor clinical outcome. Phosphatidylinositol 3-kinase (PI3K) inhibitors have shown promising results in the treatment of relapsed/refractory FL. CAR T-cell therapy (axicabtagene ciloleucel and tisagenlecleucel) has emerged as a novel treatment option for relapsed/refractory DLBCL and TFL. These NCCN Guidelines Insights highlight important updates to the NCCN Guidelines for B-Cell Lymphomas regarding the treatment of TFL and relapsed/refractory FL and DLBCL.
Inhibition of nitric oxide (NO) synthase activity by L-NG-Nitroarginine (NO2Arg) in brain preparations is not reversed by dialysis and is enhanced by prolonged preincubation of NO2Arg with the enzyme. By contrast, the weaker inhibition by NO2Arg of macrophage NO synthase is fully reversible. NO2Arg inhibits NO synthase activity in the brain after i.p. administration of 5 or 50 mg/kg. This in vivo inhibition also appears to be irreversible. The potent in vivo inhibition of central NO synthase by NO2Arg may facilitate studies of the physiologic function of NO as a neuronal messenger.
The impact of ligand binding on nuclear receptor (NR) structure and the ability of target cells to distinguish between different receptor-ligand complexes are key determinants of the pharmacological activity of NR ligands. However, until relatively recently, these mechanistic insights have not been used in a prospective manner to develop screens for NR modulators with specific therapeutic activities. Driven by the need for unique androgen receptor (AR) antagonists that retain activity in hormone-refractory prostate cancer, we developed and applied a conformation-based screen to identify AR antagonists that were mechanistically distinct from existing drugs of this class. Two molecules were identified by using this approach, D36 and D80, which interact with AR in a unique manner and allosterically inhibit AR agonist activity. Unlike the clinically important antiandrogens, casodex and hydroxyflutamide, both D36 and D80 block androgen action in cellular models of hormone-refractory prostate cancer. Mechanistically, these compounds further distinguish themselves from classical AR antagonists in that they do not promote AR nuclear translocation and quantitatively inhibit the association of AR with DNA even under conditions of overexpression. Although the therapeutic potential of these antiandrogens is apparent, it is the demonstration that it is possible, to modulate the interaction of cofactors with agonist-activated AR, using second-site modulators, that has the greatest potential with respect to the therapeutic exploitation of AR and other NRs.
Natural killer (NK)/T-cell lymphomas are a rare and distinct subtype of non-Hodgkin's lymphomas. NK/T-cell lymphomas are predominantly extranodal and most of these are nasal type, often localized to the upper aerodigestive tract. Because extranodal NK/T-cell lymphomas (ENKL) are rare malignancies, randomized trials comparing different regimens have not been conducted to date and standard therapy has not yet been established for these patients. These NCCN Guidelines Insights discuss the recommendations for the diagnosis and management of patients with ENKL as outlined in the NCCN Guidelines for T-Cell Lymphomas.
Using phage display mutagenesis, high affinity variants of RNase S-peptide were produced that bind to RNase S-protein over 100-fold more tightly than the wild type S-peptide. The S-peptide: S-protein interface was further characterized using "biased" phage display libraries, where each targeted residue was constrained to be either polar or nonpolar. The use of these tailored libraries placed constraints on the type of interactions present during affinity maturation process and allowed more amino acids to be randomized simultaneously. These results, in conjunction with kinetic association and dissociation constants determined by surface plasmon resonance (SPR), highlight the role of a single mutation (A5W) in increasing S-peptide binding affinity. High affinity S-peptide variants were only identified when tryptophan was present in the phage display library at position 5, suggesting that this residue is a "hot-spot" of binding energy in the high affinity variants. Analysis of SPR data in the presence of denaturant suggests that the increased affinity is a result of increased hydrophobic interactions in the transition state rather than a stabilization of helical structure.