Abstract Purpose: 2-Methoxyestradiol (2ME), an estrogen metabolite, induces apoptosis in various cell types. We investigated whether 2ME pretreatment can radiosensitize colon adenocarcinoma cells. Experimental Design: Radiosensitizing effects of 2ME were evaluated by cell death, clonogenic assay, nuclear fragmentation, and tumor progression of xenografts. Ionizing radiation–induced DNA damage was evaluated by histone H2AX phosphorylation and its foci. The c-Jun NH2-terminal kinase (JNK) activation was evaluated by anti-phosphorylated JNK antibody and inhibited by the JNK-specific inhibitor SP600125 or dominant-negative SEK1 expression. Results: Clonogenic assays revealed that 2ME, but not estradiol, radiosensitized three colon carcinoma cells, DLD-1, HCT-8, and HCT-15, and strongly suppressed tumor progression of DLD-1 xenografts. Gene transfer–mediated Bcl-xL overexpression largely abolished both augmented apoptosis and reduced survival fractions. Pretreatment with 2ME enhanced H2AX phosphorylation, its foci, and phosphorylation of ATM kinase and delayed re-entry of cell cycle progression after ionizing radiation. Augmentation of both radiosensitivity and H2AX phosphorylation was substantially reduced by SP600125 or overexpression of a dominant-negative mutant SEK1. Conclusion: 2ME radiosensitized colon carcinoma cells through enhanced DNA damage via JNK activation, thereby representing a novel radiosensitizing therapy against colon cancer.
Glioma is the most devastating cancer in the brain and has a poor prognosis in adults. Therefore, there is a critical need for novel therapeutic strategies for the management of glioma patients. Isogambogenic acid, an active compound extracted from the Chinese herb Garcinia hanburyi, induces autophagic cell death.Cell viability was detected with MTT assays. Cell proliferation was assessed using the colony formation assay. Morphological changes associated with autophagy and apoptosis were tested by TEM and Hoechst staining, respectively. The apoptosis rate was measured by flow cytometry. Western blot, immunofluorescence and immunohistochemical analyses were used to detect protein expression. U87-derived xenografts were established for the examination of the effect of isogambogenic acid on glioma growth in vivo.Isogambogenic acid induced autophagic death in U87 and U251 cells, and blocking late-stage autophagy markedly enhanced the antiproliferative activities of isogambogenic acid. Moreover, we observed the activation of AMPK-mTOR signalling in isogambogenic acid-treated glioma cells. Furthermore, the activation of AMPK or the inhibition of mTOR augmented isogambogenic acid-induced autophagy. Inhibition of autophagy attenuated apoptosis in isogambogenic acid-treated glioma cells. Finally, isogambogenic acid inhibited the growth of U87 glioma in vivo.Isogambogenic acid inhibits the growth of glioma via activation of the AMPK-mTOR signalling pathway, which may provide evidence for future clinical applications in glioma therapy.
Glioma is the most common primary brain tumor in the central nervous system (CNS) with high morbidity and mortality in adults. Although standardized comprehensive therapy has been adapted, the prognosis of glioma patients is still frustrating and thus novel therapeutic strategies are urgently in need. Quercetin (Quer), an important flavonoid compound found in many herbs, is shown to be effective in some tumor models including glioma. Recently, it is reported that adequate regulation of autophagy can strengthen cytotoxic effect of anticancer drugs. However, it is not yet fully clear how we should modulate autophagy to achieve a satisfactory therapeutic effect. 3-Methyladenine (3-MA) and Beclin1 short hairpin RNA (shRNA) were used to inhibit the early stage of autophage while chloroquine (CQ) to inhibit the late stage. MTT assay was implemented to determine cell viability. Transmission electron microscopy, western blot, and immunohistochemistry were adopted to evaluate autophagy. Western blot, flow cytometry, and immunohistochemistry were used to detect apoptosis. C6 glioma xenograft models were established to assess the therapeutic effect (the body weight change, the median survival time, and tumor volume) in vivo. Quercetin can inhibit cell viability and induce autophagy of U87 and U251 glioma cells in a dose-dependent manner. Inhibition of early-stage autophagy by 3-MA or shRNA against Beclin1 attenuated the quercetin-induced cytotoxicity. In contrast, suppression of autophagy at a late stage by CQ enhanced the anti-glioma efficiency of quercetin. Therapeutic effect of quercetin for malignant glioma can be strengthened by inhibition of autophagy at a late stage, not initial stage, which may provide a novel opportunity for glioma therapy.
The axonal regeneration of retinal ganglion cells (RGCs) after optic nerve (ON) crush was investigated both in vivo and in vitro on Nogo-A/B/C knockout mice.The study used 20 Nogo-A/B/C knockout mice in the experimental group, and 20 C57BL/6 mice in the control group. Partial ON injury was induced by using a specially designed ON clip to pinch the ON 1 mm behind the mouse eyeball with 40 g pressure for 9 s. The left ON was injured in both groups, but the right ON was left untouched in the control group. Nogo-A/B/C mRNA was studied by in situ hybridization in both groups. GAP-43 was studied by immunofluorescence staining on frozen sections. RGCs were purified and cultured in DMEM medium containing B-27. Cells were then immunostained with both Thy1.1 and GAP-43 antibodies. The axonal growth of RGCs was calculated by a computerized image analyzer.GAP-43 expression was significantly higher in the experimental group than in the control group (p<0.01). GAP-43 antibody binding was demonstrated in the axons of cultured RGCs. Axonal growth was significantly more active at every observed time point in the experimental group than in the control group (F=43.25, 32.16; p<0.01).Nogo genes play an inhibitive role in the axonal regeneration after ON injury, while Nogo-knockout is an effective way to eliminate this inhibition and accelerate axonal regeneration.
Mitochondrial ferritin (FtMt) is believed to play an antioxidant role via iron regulation, and FtMt gene mutation has been reported in age-related macular degeneration (AMD). However, little is known about FtMt's functions in the retina and any links to AMD. In this study, we observed age-related increase in FtMt and hypoxia-inducible factor-1α (HIF-1α) in murine retinal pigment epithelium (RPE). FtMt overexpression in ARPE-19 cells stabilized HIF-1α, and increased the secretion of vascular endothelial growth factor. Conversely, HIF-1α stabilization reduced the protein level of the mature, functional form of FtMt. FtMt-overexpressing ARPE-19 cells exhibited less oxidative phosphorylation but unchanged production of adenosine triphosphate, enhanced mitochondrial fission, and triggered mitophagy in a HIF-1α–dependent manner. These findings suggest that increased FtMt in RPE may be protective via triggering mitophagy but cause wet AMD by inducing neovascularization due to increased vascular endothelial growth factor secretion. However, reduced level of functional FtMt in RPE under hypoxia may allow dry AMD through susceptibility to age-related stress.
Abstract Glioblastoma is the most common and aggressive primary brain tumor in adults. New drug design and development is still a major challenge for glioma treatment. Increasing evidence has shown that nitazoxanide, an antiprotozoal drug, has a novel antitumor role in various tumors and exhibits multiple molecular functions, especially autophagic regulation. However, whether nitazoxanide-associated autophagy has an antineoplastic effect in glioma remains unclear. Here, we aimed to explore the underlying molecular mechanism of nitazoxanide in glioblastoma. Our results showed that nitazoxanide suppressed cell growth and induced cell cycle arrest in glioblastoma by upregulating ING1 expression with a favorable toxicity profile. Nitazoxanide inhibited autophagy through blockage of late-stage lysosome acidification, resulting in decreased cleavage of ING1. A combination with chloroquine or Torin1 enhanced or impaired the chemotherapeutic effect of nitazoxanide in glioblastoma cells. Taken together, these findings indicate that nitazoxanide as an autophagy inhibitor induces cell cycle arrest in glioblastoma via upregulated ING1 due to increased transcription and decreased post-translational degradation by late-stage autophagic inhibition.
Glioblastoma multiforme (GBM) is the most aggressive primary tumor of the central nervous system. As biomedicine advances, the researcher has found the development of GBM is closely related to immunity. In this study, we evaluated the GBM tumor immunoreactivity and defined the Immune-High (IH) and Immune-Low (IL) immunophenotypes using transcriptome data from 144 tumors profiled by The Cancer Genome Atlas (TCGA) project based on the single-sample gene set enrichment analysis (ssGSEA) of five immune expression signatures (IFN-γ response, macrophages, lymphocyte infiltration, TGF-β response, and wound healing). Next, we identified six immunophenotype-related long non-coding RNA biomarkers (im-lncRNAs, USP30-AS1, HCP5, PSMB8-AS1, AL133264.2, LINC01684, and LINC01506) by employing a machine learning computational framework combining minimum redundancy maximum relevance algorithm (mRMR) and random forest model. Moreover, the expression level of identified im-lncRNAs was converted into an im-lncScore using the normalized principal component analysis. The im-lncScore showed a promising performance for distinguishing the GBM immunophenotypes with an area under the curve (AUC) of 0.928. Furthermore, the im-lncRNAs were also closely associated with the levels of tumor immune cell infiltration in GBM. In summary, the im-lncRNA signature had important clinical implications for tumor immunophenotyping and guiding immunotherapy in glioblastoma patients in future.