ADVERTISEMENT RETURN TO ISSUEPREVArticleNEXTA Calbindin D9k Mutant with Reduced Calcium Affinity and Enhanced Cooperativity. Metal Ion Binding, Stability, and Structural StudiesSara Linse, Niels R. Bylsma, Torbjoern Drakenberg, Peter Sellers, Sture Forsen, Eva Thulin, L. Anders Svensson, Irina Zajtzeva, Vjacheslav Zajtsev, and Jaromir MarekCite this: Biochemistry 1994, 33, 41, 12478–12486Publication Date (Print):October 18, 1994Publication History Published online1 May 2002Published inissue 18 October 1994https://pubs.acs.org/doi/10.1021/bi00207a015https://doi.org/10.1021/bi00207a015research-articleACS PublicationsRequest reuse permissionsArticle Views105Altmetric-Citations8LEARN ABOUT THESE METRICSArticle Views are the COUNTER-compliant sum of full text article downloads since November 2008 (both PDF and HTML) across all institutions and individuals. These metrics are regularly updated to reflect usage leading up to the last few days.Citations are the number of other articles citing this article, calculated by Crossref and updated daily. Find more information about Crossref citation counts.The Altmetric Attention Score is a quantitative measure of the attention that a research article has received online. Clicking on the donut icon will load a page at altmetric.com with additional details about the score and the social media presence for the given article. Find more information on the Altmetric Attention Score and how the score is calculated. Share Add toView InAdd Full Text with ReferenceAdd Description ExportRISCitationCitation and abstractCitation and referencesMore Options Share onFacebookTwitterWechatLinked InRedditEmail Other access optionsGet e-Alertsclose Get e-Alerts
ADVERTISEMENT RETURN TO ISSUEPREVArticleNEXTKinetic Analysis of Cyclophilin-Catalyzed Prolyl Cis/Trans Isomerization by Dynamic NMR SpectroscopyDorothee Kern, Gunther Kern, Gerd Scherer, Gunter Fischer, and Torbjoern DrakenbergCite this: Biochemistry 1995, 34, 41, 13594–13602Publication Date (Print):October 17, 1995Publication History Published online1 May 2002Published inissue 17 October 1995https://pubs.acs.org/doi/10.1021/bi00041a039https://doi.org/10.1021/bi00041a039research-articleACS PublicationsRequest reuse permissionsArticle Views879Altmetric-Citations103LEARN ABOUT THESE METRICSArticle Views are the COUNTER-compliant sum of full text article downloads since November 2008 (both PDF and HTML) across all institutions and individuals. These metrics are regularly updated to reflect usage leading up to the last few days.Citations are the number of other articles citing this article, calculated by Crossref and updated daily. Find more information about Crossref citation counts.The Altmetric Attention Score is a quantitative measure of the attention that a research article has received online. Clicking on the donut icon will load a page at altmetric.com with additional details about the score and the social media presence for the given article. Find more information on the Altmetric Attention Score and how the score is calculated. Share Add toView InAdd Full Text with ReferenceAdd Description ExportRISCitationCitation and abstractCitation and referencesMore Options Share onFacebookTwitterWechatLinked InRedditEmail Other access optionsGet e-Alertsclose Get e-Alerts
Calcium ion binding to phospholipase A2 and its zymogen has been studied by 43Ca NMR. The temperature dependence of the band shape of the calcium-43 NMR signal has been used to calculate the calcium ion exchange rate. The on-rate was calculated to be 5 X 10(6) M-1 s-1, which is 2 orders of magnitude less than the diffusion limit of the hydrated Ca2+ ion in water. The 43Ca quadrupole coupling constant for calcium ions bound to phospholipase, chi = 1.4 MHz, is significantly larger than those found for EF-hand proteins, indicating a less symmetric site. For prophospholipase A2, we found chi = 0.8 MHz, indicating a calcium binding site, which is somewhat more symmetric than the EF-hand sites. The dependence of the 43Ca NMR band shape on the calcium ion concentration showed that there are two cation binding sites on the phospholipase A2 molecule: K1 = 4 X 10(3) M-1 and K2 = 20 M-1. The strong site was found to be affected by a pKa = 6.5 and the weak site by pKa = 4.5.
ADVERTISEMENT RETURN TO ISSUEPREVArticleNEXTA calcium-43 NMR study of calcium binding to an acidic proline-rich phosphoprotein from human salivaWilliam H. Braunlin, Hans J. Vogel, Torbjoern Drakenberg, and Anders BennickCite this: Biochemistry 1986, 25, 3, 584–589Publication Date (Print):February 11, 1986Publication History Published online1 May 2002Published inissue 11 February 1986https://pubs.acs.org/doi/10.1021/bi00351a011https://doi.org/10.1021/bi00351a011research-articleACS PublicationsRequest reuse permissionsArticle Views43Altmetric-Citations15LEARN ABOUT THESE METRICSArticle Views are the COUNTER-compliant sum of full text article downloads since November 2008 (both PDF and HTML) across all institutions and individuals. These metrics are regularly updated to reflect usage leading up to the last few days.Citations are the number of other articles citing this article, calculated by Crossref and updated daily. Find more information about Crossref citation counts.The Altmetric Attention Score is a quantitative measure of the attention that a research article has received online. Clicking on the donut icon will load a page at altmetric.com with additional details about the score and the social media presence for the given article. Find more information on the Altmetric Attention Score and how the score is calculated. Share Add toView InAdd Full Text with ReferenceAdd Description ExportRISCitationCitation and abstractCitation and referencesMore Options Share onFacebookTwitterWechatLinked InRedditEmail Other access optionsGet e-Alertsclose Get e-Alerts
ADVERTISEMENT RETURN TO ISSUEPREVArticleNEXTThree-dimensional solution structure of calcium-loaded porcine calbindin D9k determined by nuclear magnetic resonance spectroscopyMikael Akke, Torbjoern Drakenberg, and Walter J. ChazinCite this: Biochemistry 1992, 31, 4, 1011–1020Publication Date (Print):February 1, 1992Publication History Published online1 May 2002Published inissue 1 February 1992https://pubs.acs.org/doi/10.1021/bi00119a009https://doi.org/10.1021/bi00119a009research-articleACS PublicationsRequest reuse permissionsArticle Views62Altmetric-Citations39LEARN ABOUT THESE METRICSArticle Views are the COUNTER-compliant sum of full text article downloads since November 2008 (both PDF and HTML) across all institutions and individuals. These metrics are regularly updated to reflect usage leading up to the last few days.Citations are the number of other articles citing this article, calculated by Crossref and updated daily. Find more information about Crossref citation counts.The Altmetric Attention Score is a quantitative measure of the attention that a research article has received online. Clicking on the donut icon will load a page at altmetric.com with additional details about the score and the social media presence for the given article. Find more information on the Altmetric Attention Score and how the score is calculated. Share Add toView InAdd Full Text with ReferenceAdd Description ExportRISCitationCitation and abstractCitation and referencesMore Options Share onFacebookTwitterWechatLinked InRedditEmail Other access optionsGet e-Alertsclose Get e-Alerts
Blood coagulation factor X is composed of discrete domains, two of which are homologous to the epidermal growth factor (EGF). The N-terminal EGF like domain in factor X (fX-EGFN), residues 45-86 of the intact protein, contains a beta-hydroxylated aspartic acid and has one Ca2(+)-binding site. Using 2D NMR techniques, we have made a full assignment of the 500-MHz 1H NMR spectrum of Ca2(+)-free fX-EGFN. On the basis of this assignment and complementary NOESY experiments, we have also determined the secondary structure of Ca2(+)-free fX-EGFN in water solution. Residues 45-49 are comparatively mobile, whereas residues 50-56 are constrained by two disulfide bonds to one side of an antiparallel beta-sheet involving residues 59-64 and 67-72. Another antiparallel beta-sheet involves residues 76-77 and 83-84. A small, parallel beta-sheet connects residues 80-81 and 55-56 and thereby orients the two antiparallel beta-sheets relative to each other. Four beta-turns are identified, involving residues 50-53, 56-59, 64-67, and 73-76. Residues 78-82 adopt an extended bend structure. On the basis of secondary structure and the location of the three disulfide bonds, we find that Asp 46, Asp 48, and Hya 63 are sufficiently close to each other to form a Ca2(+)-binding site. However, the amino terminus of the Ca2(+)-free form of fX-EGFN is not part of a triple-stranded beta-sheet as in other EGF like peptides. Differences and similarities between fX-EFGN and murine EGF with respect to secondary structure and conformational shifts are discussed.
The complete 1H NMR assignments have been obtained for five mutant proteins of calbindin D9k and the three-dimensional solution structures determined for two of the mutants. The structures have been determined using distance geometry and simulated annealing, with distance constraints from NMR. All mutants have modifications in the first calcium-binding site of calbindin (the N-terminal site designated the pseudo-EF-hand). The 3D structure of the mutant with the most extensive modifications in the pseudo-EF-hand shows that the site has turned inside-out and coordinates calcium as in the normal EF-hand (the C-terminal site). In a pseudo-EF-hand loop the calcium is coordinated by main-chain carbonyls, whereas calcium in the normal EF-hand is coordinated by side-chain carboxylates. The 3D structures and 1H NMR assignments show that in order to accomplish a change in the coordinating ligands of the pseudo-EF-hand the loop must be 12 residues long and have glycine in the sixth position. It does, however, seem possible to have alanine instead of aspartic acid in the first calcium coordinating position. The overall global fold of the proteins has not been affected by the mutations in the calcium-binding site, as compared to the wild-type calbindin D9k [Kördel, J., Skelton, N. J., Akke, M., & Chazin, W. J. (1993) J. Mol. Biol. (in press)]. The structures consist of two helix-calcium-binding loop-helix motifs, the so called EF-hands, and the loops are connected by a short antiparallel beta-sheet. All helices are pairwise in an antiparallel orientation.
ADVERTISEMENT RETURN TO ISSUEPREVArticleNEXTMetal ion and drug binding to proteolytic fragments of calmodulin: proteolytic cadmium-113 and proton nuclear magnetic resonance studiesEva Thulin, Anita Andersson, Torbjoern Drakenberg, Sture Forsen, and Hans J. VogelCite this: Biochemistry 1984, 23, 8, 1862–1870Publication Date (Print):April 10, 1984Publication History Published online1 May 2002Published inissue 10 April 1984https://pubs.acs.org/doi/10.1021/bi00303a043https://doi.org/10.1021/bi00303a043research-articleACS PublicationsRequest reuse permissionsArticle Views107Altmetric-Citations98LEARN ABOUT THESE METRICSArticle Views are the COUNTER-compliant sum of full text article downloads since November 2008 (both PDF and HTML) across all institutions and individuals. These metrics are regularly updated to reflect usage leading up to the last few days.Citations are the number of other articles citing this article, calculated by Crossref and updated daily. Find more information about Crossref citation counts.The Altmetric Attention Score is a quantitative measure of the attention that a research article has received online. Clicking on the donut icon will load a page at altmetric.com with additional details about the score and the social media presence for the given article. Find more information on the Altmetric Attention Score and how the score is calculated. Share Add toView InAdd Full Text with ReferenceAdd Description ExportRISCitationCitation and abstractCitation and referencesMore Options Share onFacebookTwitterWechatLinked InRedditEmail Other access optionsGet e-AlertscloseSupporting Info (1)»Supporting Information Supporting Information Get e-Alerts