Gene duplication and divergence have contributed to the biochemical diversity of the alcohol dehydrogenase (ADH) family. Class I ADH is the major enzyme that catalyzes alcohol to acetaldehyde in the liver. To investigate the mechanism(s) controlling tissue-specific and temporal regulation of the three human class I ADH genes (ADH1A, ADH1B, and ADH1C), we compared genomic sequences for the human and mouse ADH loci and analyzed human ADH gene expression in BAC transgenic mice carrying different lengths of the upstream sequences of the class I ADH. A conserved noncoding sequence, located between the class I and class IV ADH (ADH7) genes, was found to be essential for directing class I ADH gene expression in fetal and adult livers. Within this region, a 275-bp fragment displaying liver-specific DNase I hypersensitivity was bound by HNF1. The HNF1-containing upstream sequence enhanced all three class I ADH promoters in an orientation-dependent manner, and the transcriptional activation depended on binding to the HNF1 site. Deletion of the conserved HNF1 site in the BAC led to the shutdown of human class I ADH gene expression in the transgenic livers, leaving ADH1C gene expression in the stomach unchanged. Moreover, interaction between the upstream element and the class I ADH gene promoters was demonstrated by chromosome conformation capture, suggesting a DNA looping mechanism is involved in gene activation. Taken together, our data indicate that HNF1 binding, at approximately 51 kb upstream, plays a master role in controlling human class I ADH gene expression and may govern alcohol metabolism in the liver.
Argininosuccinate synthetase (ASS) participates in urea and nitric oxide production and is a rate-limiting enzyme in arginine biosynthesis. Regulation of ASS expression appears complex and dynamic. In addition to transcriptional regulation, a novel post-transcriptional regulation affecting nuclear precursor RNA stability has been reported. Moreover, many cancers, including hepatocellular carcinoma (HCC), have been found not to express ASS mRNA; therefore, they are auxotrophic for arginine. To study when and where ASS is expressed and whether post-transcriptional regulation is undermined in particular temporal and spatial expression and in pathological events such as HCC, we set up a transgenic mouse system with modified BAC (bacterial artificial chromosome) carrying the human ASS gene tagged with an EGFP reporter.We established and characterized the transgenic mouse models based on the use of two BAC-based EGFP reporter cassettes: a transcription reporter and a transcription/post-transcription coupled reporter. Using such a transgenic mouse system, EGFP fluorescence pattern in E14.5 embryo was examined. Profiles of fluorescence and that of Ass RNA in in situ hybridization were found to be in good agreement in general, yet our system has the advantages of sensitivity and direct fluorescence visualization. By comparing expression patterns between mice carrying the transcription reporter and those carrying the transcription/post-transcription couple reporter, a post-transcriptional up-regulation of ASS was found around the ventricular zone/subventricular zone of E14.5 embryonic brain. In the EGFP fluorescence pattern and mRNA level in adult tissues, tissue-specific regulation was found to be mainly controlled at transcriptional initiation. Furthermore, strong EGFP expression was found in brain regions of olfactory bulb, septum, habenular nucleus and choroid plexus of the young transgenic mice. On the other hand, in crossing to hepatitis B virus X protein (HBx)-transgenic mice, the Tg (ASS-EGFP, HBx) double transgenic mice developed HCC in which ASS expression was down-regulated, as in clinical samples.The BAC transgenic mouse model described is a valuable tool for studying ASS gene expression. Moreover, this mouse model is a close reproduction of clinical behavior of ASS in HCC and is useful in testing arginine-depleting agents and for studies of the role of ASS in tumorigenesis.
Microsatellites are abundant in the human genome and may acquire context-dependent functions. A highly polymorphic GT microsatellite is located downstream of the poly(A) signal of the human argininosuccinate synthetase (ASS1) gene. The ASS1 participates in urea and nitric oxide production and is a rate-limiting enzyme in arginine biosynthesis. To examine possible involvement of the GT microsatellite in ASS1 mRNA 3'-end formation, ASS1 minigene constructs were used in transient transfection for assessment of poly(A) site usage by S1 nuclease mapping. Synthesis of the major human ASS1 mRNA is found to be controlled by two consecutive non-canonical poly(A) signals, UAUAAA and AUUAAA, located 7 nucleotides apart where a U-rich sequence and the GU microsatellite serve as their respective downstream GU/U-rich elements. Moreover, AUUAAA utilization is affected by the GU-repeat number possibly leading to differential regulation of ASS1 polyadenylation in individuals with different repeat numbers. Interestingly, the less efficient UAUAAA motif is noted to be the major ASS1 poly(A) signal possibly as a result of an indispensable downstream U-rich element and restricted utilization of the AUUAAA motif by the presence of extended GU-repeats. The UAUAAA motif and the GT microsatellite are conserved only in primates whereas AUUAAA motif is present in all mammals analyzed. The suboptimal UAUAAA motif and the utilization of the polymorphic GT microsatellite as polyadenylation signal of the ASS1 gene may be used as a strategy in primates to modulate ASS1 level in response to interactions of genetic and environmental factors.