Among the 219 vancomycin-resistant Enterococcus faecium isolates collected in 20 Taiwanese hospitals from 2006 to 2010, all were susceptible to linezolid and daptomycin, and 98.6% were susceptible to tigecycline. There was a shift toward higher tigecycline MIC values (MIC(90)s) from 2006-2007 (0.06 μg/ml) to 2008-2010 (0.12 μg/ml). The MIC(90)s of daptomycin and linezolid remained stationary. Although pulsotypes among the isolates from the 20 hospitals varied, intrahospital spreading of several clones was identified in 13 hospitals.
The aim of this study was to explore the relationship between non-alcoholic fatty liver disease (NAFLD) and the two blood inflammatory markers including the systemic immune-inflammation (SII) index, and the system inflammation response index (SIRI).
The Tigecycline In Vitro Surveillance in Taiwan (TIST) study, initiated in 2006, is a nationwide surveillance program designed to longitudinally monitor the in vitro activity of tigecycline against commonly encountered drug-resistant bacteria. This study compared the in vitro activity of tigecycline against 3,014 isolates of clinically important drug-resistant bacteria using the standard broth microdilution and disk diffusion methods. Species studied included methicillin-resistant Staphylococcus aureus (MRSA; n = 759), vancomycin-resistant Enterococcus faecium (VRE; n = 191), extended-spectrum β-lactamase (ESBL)-producing Escherichia coli (n = 602), ESBL-producing Klebsiella pneumoniae (n = 736), and Acinetobacter baumannii (n = 726) that had been collected from patients treated between 2008 and 2010 at 20 hospitals in Taiwan. MICs and inhibition zone diameters were interpreted according to the currently recommended U.S. Food and Drug Administration (FDA) criteria and the European Committee on Antimicrobial Susceptibility Testing (EUCAST) criteria. The MIC(90) values of tigecycline against MRSA, VRE, ESBL-producing E. coli, ESBL-producing K. pneumoniae, and A. baumannii were 0.5, 0.125, 0.5, 2, and 8 μg/ml, respectively. The total error rates between the two methods using the FDA criteria were high: 38.4% for ESBL-producing K. pneumoniae and 33.8% for A. baumannii. Using the EUCAST criteria, the total error rate was also high (54.6%) for A. baumannii isolates. The total error rates between these two methods were <5% for MRSA, VRE, and ESBL-producing E. coli. For routine susceptibility testing of ESBL-producing K. pneumoniae and A. baumannii against tigecycline, the broth microdilution method should be used because of the poor correlation of results between these two methods.
Japanese encephalitis (JE) is a mosquito-borne viral infection which is prevalent in Taiwan. The virus circulates in an enzootic cycle in pigs which serve as amplifying hosts. Outbreaks typically occur during summer. A universal vaccination program using 4-shot mouse brain-derived inactivated vaccine has successfully controlled JE epidemics in Taiwan since 1968. More than 90% of JE cases in recent years were older than 20 years in Taiwan. Because of several drawbacks, mouse brain-derived vaccine has been replaced by newer generation JE vaccines, including inactivated Vero cell-derived vaccine and live chimeric vaccine. The present article describes the recommendations in Taiwan for the use of new JE vaccines and the schedules for shifting between different JE vaccines.
The Tigecycline In Vitro Surveillance in Taiwan (TIST) study, a nationwide, prospective surveillance during 2006 to 2010, collected a total of 7,793 clinical isolates, including methicillin-resistant Staphylococcus aureus (MRSA) (n = 1,834), penicillin-resistant Streptococcus pneumoniae (PRSP) (n = 423), vancomycin-resistant enterococci (VRE) (n = 219), extended-spectrum β-lactamase (ESBL)-producing Escherichia coli (n = 1,141), ESBL-producing Klebsiella pneumoniae (n = 1,330), Acinetobacter baumannii (n = 1,645), and Stenotrophomonas maltophilia (n = 903), from different specimens from 20 different hospitals in Taiwan. MICs of tigecycline were determined following the criteria of the U.S. Food and Drug Administration (FDA) and the European Committee on Antimicrobial Susceptibility Testing (EUCAST-2011). Among drug-resistant Gram-positive pathogens, all of the PRSP isolates were susceptible to tigecycline (MIC(90), 0.03 μg/ml), and only one MRSA isolate (MIC(90), 0.5 μg/ml) and three VRE isolates (MIC(90), 0.125 μg/ml) were nonsusceptible to tigecycline. Among the Gram-negative bacteria, the tigecycline susceptibility rates were 99.65% for ESBL-producing E. coli (MIC(90), 0.5 μg/ml) and 96.32% for ESBL-producing K. pneumoniae (MIC(90), 2 μg/ml) when interpreted by FDA criteria but were 98.7% and 85.8%, respectively, when interpreted by EUCAST-2011 criteria. The susceptibility rate for A. baumannii (MIC(90), 4 μg/ml) decreased from 80.9% in 2006 to 55.3% in 2009 but increased to 73.4% in 2010. A bimodal MIC distribution was found among carbapenem-susceptible A. baumannii isolates, and a unimodal MIC distribution was found among carbapenem-nonsusceptible A. baumannii isolates. In Taiwan, tigecycline continues to have excellent in vitro activity against several major clinically important drug-resistant bacteria, with the exception of A. baumannii.