CD95 is a member of the tumor necrosis factor receptor family. It is constitutively expressed on the basolateral membrane of intestinal epithelial cells (IECs) and under certain conditions induces apoptosis when crosslinked by its natural ligand, CD95L. A multitude of studies have been published addressing the question of where and under which conditions CD95L is produced in the gut in normal, inflammatory, and neoplastic situations and whether the apoptosis-inducing activity of CD95 contributes to pathology. Although some of these studies have considerably influenced our view on the role of the CD95/CD95L system compelling evidence for an involvement of the CD95/CD95L system in the physiological epithelial cell turnover is lacking.CD95 signaling deficiency in the colon was achieved in 2 ways. By transplanting bone marrow from wildtype mice into lethally irradiated mice expressing a signaling deficient mutant of CD95 (lpr(cg) mice) and by tissue-specific deletion of CD95 in IECs. Mice were treated with either 3 cycles of dextran sulfate sodium (DSS) to induce colitis or by injection of azoxymethane (AOM) followed by 3 cycles of DSS to induce colon cancer. Disease index and the formation of neoplastic lesions in the colon were determined and histological analysis was performed.In each mouse model lacking CD95 activity in the colon mice were hypersensitive to DSS-induced colitis. In the CD95-deficient mice this did not have an effect on AOM/DSS-induced cancer formation.CD95 plays a role in protecting the colon from inflammation without contributing to colon cancer, under conclusions of increased inflammation.
Abstract Purpose: Rho GDP dissociation inhibitor 2 (RhoGDI2) has been identified as a regulator of Rho family GTPase. However, there is currently no direct evidence suggesting whether RhoGDI2 activates or inhibits Rho family GTPase in vivo (and which type), and the role of RhoGDI2 in tumor remains controversial. Here, we assessed the effects of RhoGDI2 expression on gastric tumor growth and metastasis progression. Experimental Design: Proteomic analysis was done to investigate the tumor-specific protein expression in gastric cancer and RhoGDI2 was selected for further study. Immunohistochemistry was used to detect RhoGDI2 expression in clinical samples of primary gastric tumor tissues which have different pathologic stages. Gain-of-function and loss-of-function approaches were done to examine the malignant phenotypes of the RhoGDI2-expressing or RhoGDI2-depleting cells. Results: RhoGDI2 expression was correlated positively with tumor progression and metastasis potential in human gastric tumor tissues, as well as cell lines. The forced expression of RhoGDI2 caused a significant increase in gastric cancer cell invasion in vitro, and tumor growth, angiogenesis, and metastasis in vivo, whereas RhoGDI2 depletion evidenced opposite effects. Conclusion: Our findings indicate that RhoGDI2 is involved in gastric tumor growth and metastasis, and that RhoGDI2 may be a useful marker for tumor progression of human gastric cancer.
Currently, there are no approved targeted therapies for the treatment of ovarian cancer, despite the fact that it is the most lethal gynecological malignancy. One proposed target is c-Met, which has been shown to be an important prognostic indicator in a number of malignancies, including ovarian cancer. The objective of this study was to determine whether an orally available multikinase inhibitor of c-Met and vascular endothelial growth factor receptor-2 (foretinib, GSK1363089) blocks ovarian cancer growth.The effect of foretinib was tested in a genetic mouse model of endometrioid ovarian cancer, several ovarian cancer cell lines, and an organotypic 3D model of the human omentum.In the genetic mouse model, treatment with foretinib prevented the progression of primary tumors to invasive adenocarcinoma. Invasion through the basement membrane was completely blocked in treated mice, whereas in control mice, invasive tumors entirely replaced the normal ovary. In 2 xenograft mouse models using human ovarian cancer cell lines, the inhibitor reduced overall tumor burden (86% inhibition, P < 0.0001) and metastasis (67% inhibition, P < 0.0001). The mechanism of inhibition by foretinib involved (a) inhibition of c-Met activation and downstream signaling, (b) reduction of ovarian cancer cell adhesion, (c) a block in migration and invasion, (d) reduced proliferation mediated by a G(2)-M cell-cycle arrest, and (e) induction of anoikis.This study shows that foretinib blocks tumorigenesis and reduces invasive tumor growth in different models of ovarian cancer by affecting several critical tumor functions. We believe that it provides a rationale for the further clinical development of foretinib for the treatment of ovarian cancer.
Many Fas-expressing cells do not undergo cell death upon Fas stimulation. In the normal human diploid cell line GM6112, the addition of soluble Fas ligand (sFasL) leads to morphological signs of cell death in less than 1% of cells. Treatment of serum-starved GM6112 fibroblasts with sFasL resulted in a rapid and transient phosphorylation of ERK1/2 without a significant increase in JNK and p38 activities. Unless co-treated with the protein synthesis inhibitor anisomycin, sFasL did not show gene-inducing activity in cells maintained in complete medium. However, when cells were serum-starved for 4 days, treatment with sFasL alone induced interleukin-6 gene expression and, less strongly, interleukin-8 gene expression. Sensitization of the gene-inducing activity by serum starvation correlated with NF-κB activation by sFasL. Furthermore, we found that the expression of FADD and caspase-8 was significantly reduced in serum-starved cells, whereas the level of cFLIP remained unchanged. Transfection of GM6112 cells with the antisense caspase-8 expression construct sensitized cells toward sFasL-induced NF-κB-dependent reporter activation. Our results support the notion that a change in the ratio of cFLIP and caspase-8 may be responsible for turning on the Fas-activated NF-κB pathway, which otherwise is supplanted by the death-inducing pathway.
Telomere homeostasis is regulated by telomerase and a collection of associated proteins. Telomerase is, in turn, regulated by post-translational modifications of the rate-limiting catalytic subunit hTERT. Here we show that disruption of Hsp90 by geldanamycin promotes efficient ubiquitination and proteasome-mediated degradation of hTERT. Furthermore, we have used the yeast two-hybrid method to identify a novel RING finger gene ( MKRN1 ) encoding an E3 ligase that mediates ubiquitination of hTERT. Overexpression of MKRN1 in telomerase-positive cells promotes the degradation of hTERT and decreases telomerase activity and subsequently telomere length. Our data suggest that MKRN1 plays an important role in modulating telomere length homeostasis through a dynamic balance involving hTERT protein stability.