The initial phase of the COVID-19 pandemic changed the nature of course delivery from largely in-person to exclusively remote, thus disrupting the well-established pedagogy of the Genomics Education Partnership (GEP; https://www.thegep.org). However, our web-based research adapted well to the remote learning environment. As usual, students who engaged in the GEP's Course-based Undergraduate Research Experience (CURE) received digital projects based on genetic information within assembled
Inositol phosphate signaling has been implicated in a wide variety of eukaryotic cellular processes. In Drosophila, the phototransduction cascade is mediated by a phosphoinositide-specific phospholipase C (PLC) encoded by the norpA gene. We have characterized eight norpA mutants by electroretinogram (ERG), Western, molecular, and in vitro PLC activity analyses.ERG responses of the mutants show allele-dependent reductions in amplitudes and retardation in kinetics. The mutants also exhibit allele-dependent reductions in in vitro PLC activity levels and greatly reduced or undetectable NorpA protein levels. Three carry a missense mutation and five carry a nonsense mutation within the norpA coding sequence. In missense mutants, the amino acid substitution occurs at residues highly conserved among PLCs. These substitutions reduce the levels of both the NorpA protein and the PLC activity, with the reduction in PLC activity being greater than can be accounted for simply by the reduction in protein. The effects of the mutations on the amount and activity of the protein are much greater than their effects on the ERG, suggesting an amplification of the transduction signal at the effector (NorpA) protein level.Transgenic flies were generated by germline transformation of a null norpA mutant using a P-element construct containing the wild-type norpA cDNA driven by the ninaE promoter. Transformed flies show rescue of the electrophysiological phenotype in R1-R6 photoreceptors, but not in R7 or R8. The degeneration phenotype of R1-R6 photoreceptors is also rescued. Inositol phosphate signaling has been implicated in a wide variety of eukaryotic cellular processes. In Drosophila, the phototransduction cascade is mediated by a phosphoinositide-specific phospholipase C (PLC) encoded by the norpA gene. We have characterized eight norpA mutants by electroretinogram (ERG), Western, molecular, and in vitro PLC activity analyses. ERG responses of the mutants show allele-dependent reductions in amplitudes and retardation in kinetics. The mutants also exhibit allele-dependent reductions in in vitro PLC activity levels and greatly reduced or undetectable NorpA protein levels. Three carry a missense mutation and five carry a nonsense mutation within the norpA coding sequence. In missense mutants, the amino acid substitution occurs at residues highly conserved among PLCs. These substitutions reduce the levels of both the NorpA protein and the PLC activity, with the reduction in PLC activity being greater than can be accounted for simply by the reduction in protein. The effects of the mutations on the amount and activity of the protein are much greater than their effects on the ERG, suggesting an amplification of the transduction signal at the effector (NorpA) protein level. Transgenic flies were generated by germline transformation of a null norpA mutant using a P-element construct containing the wild-type norpA cDNA driven by the ninaE promoter. Transformed flies show rescue of the electrophysiological phenotype in R1-R6 photoreceptors, but not in R7 or R8. The degeneration phenotype of R1-R6 photoreceptors is also rescued.
A hallmark of the research experience is encountering difficulty and working through those challenges to achieve success. This ability is essential to being a successful scientist, but replicating such challenges in a teaching setting can be difficult. The Genomics Education Partnership (GEP) is a consortium of faculty who engage their students in a genomics Course-Based Undergraduate Research Experience (CURE). Students participate in genome annotation, generating gene models using multiple lines of experimental evidence. Our observations suggested that the students’ learning experience is continuous and recursive, frequently beginning with frustration but eventually leading to success as they come up with defendable gene models. In order to explore our “formative frustration” hypothesis, we gathered data from faculty via a survey, and from students via both a general survey and a set of student focus groups. Upon analyzing these data, we found that all three datasets mentioned frustration and struggle, as well as learning and better understanding of the scientific process. Bioinformatics projects are particularly well suited to the process of iteration and refinement because iterations can be performed quickly and are inexpensive in both time and money. Based on these findings, we suggest that a dynamic of “formative frustration” is an important aspect for a successful CURE.
Abstract The Muller F element (4.2 Mb, ~80 protein-coding genes) is an unusual autosome of Drosophila melanogaster; it is mostly heterochromatic with a low recombination rate. To investigate how these properties impact the evolution of repeats and genes, we manually improved the sequence and annotated the genes on the D. erecta, D. mojavensis, and D. grimshawi F elements and euchromatic domains from the Muller D element. We find that F elements have greater transposon density (25–50%) than euchromatic reference regions (3–11%). Among the F elements, D. grimshawi has the lowest transposon density (particularly DINE-1: 2% vs. 11–27%). F element genes have larger coding spans, more coding exons, larger introns, and lower codon bias. Comparison of the Effective Number of Codons with the Codon Adaptation Index shows that, in contrast to the other species, codon bias in D. grimshawi F element genes can be attributed primarily to selection instead of mutational biases, suggesting that density and types of transposons affect the degree of local heterochromatin formation. F element genes have lower estimated DNA melting temperatures than D element genes, potentially facilitating transcription through heterochromatin. Most F element genes (~90%) have remained on that element, but the F element has smaller syntenic blocks than genome averages (3.4–3.6 vs. 8.4–8.8 genes per block), indicating greater rates of inversion despite lower rates of recombination. Overall, the F element has maintained characteristics that are distinct from other autosomes in the Drosophila lineage, illuminating the constraints imposed by a heterochromatic milieu.
In insects, histamine is found both in the peripheral nervous system (PNS) and in the CNS and is known to function as a fast neurotransmitter in photoreceptors that have been shown to express selectively the hdc gene. This gene codes for histidine decarboxylase (HDC), the enzyme for histamine synthesis. Fast neurotransmission requires the efficient removal of the transmitter from the synaptic cleft. Here we identify in Drosophila photo- and mechanoreceptors a histamine uptake mechanism that can restore the function of these receptors in mutants unable to synthesize histamine. When apparent null mutants for the hdc gene imbibe aqueous histamine solution or are genetically “rescued” by a transgene ubiquitously expressing histidine decarboxylase under heat-shock control, sufficient amounts of histamine selectively accumulate in photo- and mechanoreceptors to generate near-normal electrical responses in second-order visual interneurons and qualitatively to restore wild-type visual and mechanosensory behavior. This strongly supports the proposal that histamine functions as a fast neurotransmitter also in a certain class of mechanoreceptors. A set of CNS-intrinsic neurons that in the wild type contain high concentrations of histamine apparently lacks this uptake mechanism. We therefore speculate that histamine of intrinsic neurons may function as a neuromodulator rather than as a fast transmitter.