Background: In myasthenic patients, the time course of action of non-depolarizing neuromuscular blocking agents is prolonged and the sensitivity is increased. We used our antegrade perfused rat peroneal nerve anterior tibialis muscle model to investigate if this altered time course of effect and sensitivity can be explained by the decreased acetylcholine receptor concentration that is caused by the disease. Methods: Functional acetylcholine receptors were reduced by administration of α-bungarotoxin or by injecting monoclonal antibodies against rat acetylcholine receptors (experimental autoimmune myasthenia gravis). After induction of anaesthesia, the model was set up and perfusion of the tibialis anterior muscle with blood was started. After stabilization of the twitch, rocuronium or pancuronium were infused until 90% block was obtained. Twitch data and infusion data were recorded and used to calculate the time course of effect and potency. Results: The potency of neuromuscular blocking agents was increased and the offset of the neuromuscular block was prolonged in both the α-bungarotoxin groups and the experimental autoimmune myasthenia gravis groups compared to controls. Conclusion: This study shows that the increased sensitivity to neuromuscular-blocking agents in myasthenia gravis can be accounted for by a decreased number of acetylcholine receptors. It also shows that the antegrade perfused rat peroneal nerve anterior tibialis muscle model is a suitable model to study the effects of myasthenia gravis on the time course of effect of neuromuscular blocking agents.
Myasthenia gravis is usually caused by autoantibodies to the acetylcholine receptor (AChR). The AChR is clustered and anchored in the postsynaptic membrane of the neuromuscular junction (NMJ) by a cytoplasmic protein called rapsyn. We previously showed that resistance to experimental autoimmune myasthenia gravis (EAMG) in aged rats correlates with increased rapsyn concentration at the NMJ. It is possible, therefore, that endogenous rapsyn expression may be an important determinant of AChR loss and neuromuscular transmission failure in the human disease, and that upregulation of rapsyn expression could be used therapeutically. To examine first a potential therapeutic application of rapsyn upregulation, we induced acute EAMG in young rats by passive transfer of AChR antibody, mAb 35, and used in vivo electroporation to over-express rapsyn unilaterally in one tibialis anterior. We looked at the compound muscle action potentials (CMAPs) in the tibialis anterior, at rapsyn and AChR expression by quantitative radioimmunoassay and immunofluorescence, and at the morphology of the NMJs, comparing the electroporated and untreated muscles, as well as the control and EAMG rats. In control rats, transfected muscle fibres had extrasynaptic rapsyn aggregates, as well as slightly increased rapsyn and AChR concentrations at the NMJ. In EAMG rats, despite deposits of the membrane attack complex, the rapsyn-overexpressing muscles showed no decrement in the CMAPs, no loss of AChR, and the majority had normal postsynaptic folds, whereas endplates of untreated muscles showed typical AChR loss and morphological damage. These data suggest not only that increasing rapsyn expression could be a potential treatment for selected muscles of myasthenia gravis patients, but also lend support to the hypothesis that individual differences in innate rapsyn expression could be a factor in determining disease severity.
Pathogenic anti-acetylcholine receptor (AChR) antibodies in myasthenia gravis (MG) and the corresponding animal model, experimental autoimmune myasthenia gravis (EAMG), principally recognize the main immunogenic region (MIR) of the AChR. Bivalent anti-MIR antibodies binding to the alpha-subunits of AChR result in AChR loss by antigenic modulation and complement activation. Monovalent Fab and single-chain variable fragments (scFv) of pathogenic anti-AChR antibodies can interfere with AChR binding of the pathogenic antibodies. In the present study, scFv637 was constructed from its parental Fab637, previously isolated from a thymus-derived phage display library with specificity toward anti-MIR of human AChR (hAChR), by PCR amplification. Bacterial produced scFv637 was able to bind to hAChR in standard precipitation radioimmunoassay (RIA). ScFv637 also bound to monkey AChR in situ on monkey neuromuscular junctions as showed in immunohistochemical staining. Furthermore, scFv637 was capable of inhibiting the binding of its intact IgG637 and anti-MIR mAb35 binding to hAChR up to 32.9 and 73.0%, respectively demonstrated in a competitive ELISA, and of MG patient sera from up to 45.5% in a competitive RIA. Therefore, scFv637, easier for manipulation in improvement of affinity and stability compared with its parental Fab637, may serve as an alternative candidate for specific immunotherapy in MG.
Abstract Abs to U1 RNA are frequently found in patients suffering from systemic lupus erythematosus overlap syndromes and Ab titers correlate with disease activity. We describe the isolation of the first human anti-U1 RNA autoantibodies from a combinatorial IgG library made from the bone marrow of a systemic lupus erythematosus patient. With the use of phage display technology, two anti-U1 RNA single-chain variable fragment (scFv) Abs were selected. Both high affinity anti-U1 RNA Ab fragments (Kd ∼ 1 nM) recognize stem II of U1 RNA and were derived from the same heavy chain gene (VH3–11) and the same λ (3r) light chain gene although somatic mutations, predominantly present in the complementarity-determining regions, are different. Experiments, in which the heavy chain genes of both anti-U1 RNA scFvs were reshuffled with the original light chain repertoire of the patient resulted, after selection on stem loop II, in a large number of RNA-binding Ab fragments. All these stem loop II-specific RNA binding clones used a similar, but not identical, 3r λ light chain. When scFvs were selected from the reshuffled libraries by stem loop IV, representing the other autoantigenic site of U1 RNA, most selected Ab clones did react with stem loop IV, but no longer with stem loop II. The stem loop IV-reactive Ab clones contained different, not 3r-related, light chains. These results point to a major role for the light chain in determining the sequence specificity of these disease-related anti-U1 RNA Abs. The possibility that secondary light chain rearrangements are involved in this autoimmune response is discussed.
Background In myasthenic patients, the sensitivity for nondepolarizing relaxants is increased and the time course of effect is prolonged due to a reduced number of functional acetylcholine receptors at the neuromuscular junction. The authors investigated both the performance of the link model proposed by Sheiner and a pharmacodynamic-pharmacokinetic model taking into account the number of unbound acetylcholine receptors in myasthenic pigs. Methods After obtaining the approval of the Animal Experiments Committee of their institution, the authors studied eight myasthenic pigs and eight control pigs. Myasthenia gravis was induced by injecting Torpedo acetylcholine receptors in weeks 1 and 4. On the day of the experiments, the pigs were anesthetized and intubated, and the appropriate muscles and nerves were prepared for the measurements. Rocuronium was administered by infusion to reach 90% twitch height block. Arterial blood was sampled during onset and offset of effect, and the plasma concentration of rocuronium was measured with high-performance liquid chromatography. Plasma concentration-time effect data were analyzed using two different pharmacokinetic-pharmacodynamic models, the link model according to Sheiner and a pharmacokinetic-pharmacodynamic model taking into account the unbound receptor concentration. Muscles were removed after the experiment for laboratory analysis of the acetylcholine receptor concentration. Results All eight pigs of the myasthenic group developed clinical signs of myasthenia gravis (muscle weakness) and showed increased sensitivity toward rocuronium. Pharmacokinetic modeling revealed no significant differences between myasthenic and control pigs. In pharmacokinetic-pharmacodynamic analysis, visual inspection as well as the Akaike Information Criterion (3,605 3,769) and the residual SD (3.2 3.6%) revealed a better fit for the unbound receptor model in myasthenic animals compared to the Sheiner model. Pharmacokinetic-pharmacodynamic analysis with the unbound receptor model demonstrated a decreased EC50 of 0.27 micro m (ranging from 0.17 to 0.59 micro m) compared to 2.71 micro m (ranging from 2.42 to 4.43 micro m) in control animals. The results of the Sheiner pharmacokinetic-pharmacodynamic analysis were in the same range. Both the laboratory analysis and pharmacokinetic-pharmacodynamic modeling showed a decrease in receptor concentration of more than 75%. Conclusion Both the Sheiner model and the unbound receptor model may be used to fit plasma concentration-effect data of rocuronium in pigs. The unbound receptor concentration model, however, can explain the observed differences in the time course of effect, based on receptor concentration.
This is the first study in which the complex of a monoclonal autoantibody fragment and its target, stem loop II of U1 snRNA, was investigated with enzymatic and chemical probing. A phage display antibody library derived from bone marrow cells of an SLE patient was used for selection of scFvs specific for stem loop II. The scFv specificity was tested by RNA immunoprecipitation and nitrocellulose filter binding competition experiments. Immunofluorescence data and immunoprecipitation of U1 snRNPs containing U1A protein, pointed to an scFv binding site different from the U1A binding site. The scFv binding site on stem loop II was determined by footprinting experiments using RNase A, RNase V1, and hydroxyl radicals. The results show that the binding site covers three sequence elements on the RNA, one on the 5′ strand of the stem and two on the 3′ strand. Hypersensitivity of three loop nucleotides suggests a conformational change of the RNA upon antibody binding. A three-dimensional representation of stem loop II reveals a juxtapositioning of the three protected regions on one side of the helix, spanning approximately one helical turn. The location of the scFv binding site on stem loop II is in full agreement with the finding that both the U1A protein and the scFv are able to bind stem loop II simultaneously. As a consequence, this recombinant monoclonal anti-U1 snRNA scFv might be very useful in studies on U1 snRNPs and its involvement in cellular processes like splicing.