A denoising method of all-fiber pulsed coherent Doppler LIDAR (CDL) is investigated. The goal is to enhance the signal-to-noise ratio (SNR) in the weak signal regime. Based on differential detection theory, the total noise expression of CDL with a dual-balanced detector is introduced and analyzed. The conclusion is drawn that the total noise can be acquired under the local oscillator laser exposure conditions by reasonable simplification. Using the actual measured data, the ratio of the standard deviation to the mean value of the total noise in each range gate is obtained and is up to approximately 11%. In order to suppress the jitter of the noise, an effective noise modeling by the trend of each range gate is developed. The feasibility of this method is verified by a long set of measured data. The spatial and temporal distribution of wind speed is illustrated with 400 pulses accumulation. Compared to the noise modeling of the tail, the detection range of wind speed using the proposed method can be improved by 35.3%.
In 2016, the China Meteorological Administration organized the "Megacity Experiment on integrated Meteorological Observation in China" to realize the continuous quantitative observation of aerosol profiles in megacities by using aerosol lidar. In order to ensure the quantitative comparability of the observed data of aerosol lidar, in September 2017, the CMA Meteorological Observation Centre carried out the first megacity experiment in the South suburb Observatory of Beijing. In the calibration test of aerosol lidar, the hardware system calibration of six lidars and the calibration of 2km-5km are completed by using the method of statistical analysis. This is the second aerosol calibration test of the Megacity Experiment in 2018. For the first time, the standard aerosol lidar developed by the University of Naples in Europe is introduced as the standard source, and 10 lidars from different manufacturers participating in the joint test are calibrated and compared at the same site at the same time. The results show that: REAL LIDAR as a reference source is equivalent to the calibration results using statistical methods. In the future, REAL LIDAR can be used as a standard to calibrate other lidar by means of quantum transfer. In this paper, the system deviation and standard deviation of backscatter coefficient of 1-8 km are obtained, and the results meet the calibration requirements of European EARLINET. This work promotes the improvement of the data quality of aerosol lidar, ensures the reliability and consistency of the data when multiple lidar network observation, and provides the basis for lidar to enter the real-time business NET.
Aim: Based on metabonomics, the metabolic markers of lung cancer patients were analyzed, combined with bioinformatics to explore the underlying disease mechanism. Materials & methods: Based on case–control design, using UPLC-Q-TOF/MS, urine metabolites were detected in discovery and validation set. Multivariate statistical analysis were performed to identify potential markers for lung cancer. A network analysis was constructed to integrate lung cancer disease targets with the above metabolic markers, and its possible mechanism and biological significance were explained. Results: A total of 35 potential markers were identified, 11 of which overlapped. Five key markers have a good linear correlation with serum biochemical indicators. Conclusion: The occurrence and development of lung cancer are closely related to disturbance of D-Glutamine and D-glutamate metabolism, amino acid imbalance. This test was registered on China clinical trial registration center (www.chictr.org.cn/index.aspx), registration number was ChiCTR1900025543.
Abstract. Aerosol lidar networks can play an important role in revealing structural characteristics of the atmospheric boundary layer, the urban heat island effect, and the spatial distribution of aerosols, especially in relation to the monitoring of atmospheric pollution in megacities. To fulfill the need of the monitoring and numerical forecasting of atmospheric pollution, an aerosol lidar network is proposed by the China Meteorological Administration which serves as an important part of the “MegaCity Experiment on Integrated Meteorological Observation in China” (MEMO). To ensure a high standard of data quality and traceability of measurement error, an inter-comparison campaign, dedicated to the quality assessment of lidar systems from different institutes and manufacturers, was designed and performed at Beijing Southern Suburb Observatory in September 2021. Six Mie–Rayleigh lidar systems at 1064 nm were involved in this campaign. The strategies for lidar self-evaluations and inter-comparisons were predefined. A lidar system at 1064 nm, which was developed by the Atmospheric Remote Sensing group at Wuhan University, was selected as the reference lidar system after passing all strict self-evaluation quality checks. The reference lidar system serves as the cornerstone for evaluating the performance of other lidar systems. After using the Rayleigh fit and signal-to-noise evaluation self-tests for each individual lidar system as a fast check of the data quality, the range-corrected signal and backscatter coefficient obtained from all the lidar systems were inter-compared with a reference lidar system. In the end, the lidar systems passed the quality control/assurance, ensuring that the standard deviation of range-corrected signal could be controlled within 5 % at 500–2000 m and 10 % at 2000–5000 m. For the derived aerosol backscatter coefficients, standard deviations can be controlled within 10 % at 500–2000 and 2000–5000 m. The quality assurance strategy lays down a solid basis for atmospheric lidar at near-infrared wavelengths and will be applied in Chinese lidar network development.
Abstract. Wind-profiling lidars are now regularly used in boundary-layer meteorology and in applications such as vertical wind field measurement. In order to verify the accuracy of the Doppler wind lidar, the major domestic Doppler wind lidar manufacturers were organized to compare the Minute-level average wind speed and direction data measured by the lidar to which measured by meteorological gradient tower and L band Sounding radar in Shenzhen and Zhangjiakou, respectively. The result of comparison with the wind cup on the meteorological gradient tower is in good agreement, the correlation coefficient of wind speed is close to or higher than 90 %, and the maximum standard deviation of the wind direction is about 7° except the inflection point. When the L-band sounding radar is used as a reference for the lidar equipment which joint the comparison. The system difference and standard deviation of daily wind speed and direction vary greatly, and the reliability is poor. At the same time, it was founded that compared with the 1-minute average data, when the 10-minute average data were used for comparison, the system deviation and standard deviation were reduced. That mean the results were more stable and reliable. The comparison results show that the technical indicators of several domestic lidar equipment are equivalent to windcube indicators made by Vaisala and complying with the World Meteorological Organization's requirements for the Coherent Doppler Lidar indicator for near-term weather forecasts. It shows the lidars are reliable to obtain wind speed and direction parameters at different altitudes in real time.
The pure rotational Raman lidar temperature measurement system is usually used for retrieval of atmospheric temperature according to the echo signal ratio of high and low-level quantum numbers of N2 molecules which are consistent with the exponential relationship. An effective method to detect the rotational Raman spectrum is taking a double grating monochromator. In this paper the detection principle and the structure of the dual-grating monochromator are described, with analysis of rotational Raman's Stokes and anti-Stokes spectrums of N2 molecule, the high order and lower order quantum number of the probe spectrum are resolved, then the specific design parameters are presented. Subsequently spectral effect is simulated with Zemax software. The simulation result indicates that under the condition of the probe laser wavelength of 532nm and using double-grating spectrometer which is comprised by two blazed gratings, Raman spectrums of 529.05nm, 530.40nm, 533.77nm, 535.13nm can be separated well, and double-grating monochromator has high diffraction efficiency.
Coherent doppler lidar for wind is based on the heterodyne detection between local oscillator signal and the echo signal. Optimum optical local oscillator power is an important factor of the signal to noise ratio. The dynamic range of echo signal, the relative intensity noise and the photoelectric detector saturation effect are studied comprehensively as the local oscillator power influence factors for the first time. The expression of the local oscillator power and SNR is derived. Using the computer simulation, the conclusion that the dynamic range of the echo signal will not affect the optimum of the local oscillator is obtained. Selecting different values of the relative intensity noise, the curves of the SNR versus local oscillator are given. Comparing the SNR formula in the quantum limit with the derived SNR formula, the saturation effect of the photoelectric devices is studied.
A fine aerosol particle pollution episode happened in mega city Beijing during February 25th – March 5th. Aerosol extinction coefficient profiles were observed at 7 L idar s ta ti ons. Different aerosol optical property instruments were used to verify Lidar retrievals. Ground visibility observations were used to verify near ground Lidar observations. High correlation coefficient was found (0.8) between visiometer and Lidar observations. Lidar’s Column integrated aerosol extinction coefficient was also verified by Himawari-8 aerosol optical depth (AOD) data. The correlation coefficient between two AOD retrievals was 0.4. And the mean bias was -0.17. CALIPSO aerosol property profiles was also used to verify Lidar retrievals. Lidar retrievals was inconsistent with CALIPSO in the boundary layer. Overall, the Lidar retrievals are consistent with other optical property sensors. And the retrials could be used for observation research and model validation.
Abstract. Wind-profiling lidars are now regularly used in boundary-layer meteorology and in applications such as vertical wind field measurement. In order to verify the accuracy of the Doppler wind lidar, the major domestic Doppler wind lidar manufacturers were organized to compare the Minute-level average wind speed and direction data measured by the lidar to which measured by meteorological gradient tower and L band Sounding radar in Shenzhen and Zhangjiakou, respectively. The result of comparison with the wind cup on the meteorological gradient tower is in good agreement, the correlation coefficient of wind speed is close to or higher than 90 %, and the maximum standard deviation of the wind direction is about 7° except the inflection point. When the L-band sounding radar is used as a reference for the lidar equipment which joint the comparison. The system difference and standard deviation of daily wind speed and direction vary greatly, and the reliability is poor. At the same time, it was founded that compared with the 1-minute average data, when the 10-minute average data were used for comparison, the system deviation and standard deviation were reduced. That mean the results were more stable and reliable. The comparison results show that the technical indicators of several domestic lidar equipment are equivalent to windcube indicators made by Vaisala and complying with the World Meteorological Organization's requirements for the Coherent Doppler Lidar indicator for near-term weather forecasts. It shows the lidars are reliable to obtain wind speed and direction parameters at different altitudes in real time.