An oncogenic capacity of aquaporins (AQPs) has been recently proposed. They are channel-forming membrane proteins that function as osmotically driven transepithelial and transcellular water. Most recently, overexpression of several AQPs has been reported in different types of human cancer, which indicates that AQPs may play an important role in human carcinogenesis.In this study, we were going to elucidate the involvement of aquaporin 1 and 4 (AQP1,4) in the metastasis of lung cancer.Expression of AQP1,4 was examined by immunohistochemistry on the twenty lung cancer tissues. AQP1,4 were overexpressed in 65% (13 of 20) and 70% (14 of 20) of adenocarcinoma, while the normal lung tissues were negative. We next investigated the roles of AQP1,4 in the invasion of lung cancer cells by transwell migration assays. It is indicated that migration cells of the AQP1-shRNA or AQP4-shRNA were reduced significantly in comparison to the controls (AQP1- shRNA vs. AQP1-CTL, 5.6% vs. 15.9%, p < 0.05; AQP4- shRNA vs. AQP4-CTL, 8.9% vs. 14.8%, p < 0.05). From this study, we found AQP1 and AQP4 in lung cancer cell extravasation and spread, which may provide a functional explanation for the expression of AQP1 and AQP4 in lung cancer tissues and lung cancer cell lines.Although further details on the molecular function of AQP1 or 4 related to tumorigenesis remain to be elucidated, our results suggest a potential role of AQP1 or 4 as novel therapeutic targets for the management of lung cancer.
Multiparameter integrated sensors are required for the next generation of flexible wearable electronics. However, mutual interference between detected signals is a technical bottleneck for a flexible tactile sensor to realize pressure-strain monitoring simultaneously and sensitively. Herein, a flexible dual-parameter pressure-strain sensor based on the three-dimensional (3D) tubular graphene sponge (TGS) and spider web-like stretchable electrodes is designed and fabricated. As the pressure-sensitive module, the unique 3D-TGS with an uninterrupted network of tubular graphene and high graphitic degree demonstrates great robust compressibility, supporting compression to ∼20% without shape collapse. The spider web-like stretchable electrodes as the strain-sensitive module are fabricated by a spray-embedded process based on the hierarchical multiscale hybrid nanocomposite of Ag nanowires (NWs) and carbon nanotubes (CNTs) with an optimal mass ratio. By comparing the output signals of spider web-like flexible electrodes, the magnitude and direction of the applied force can be effectively monitored simultaneously. Moreover, the potential applications of the flexible dual-parameter pressure-strain device in human-machine interaction are also explored, showing great promise in artificial intelligence and wearable systems.
Influenza B virus is a major causative agent of respiratory disease in humans. Our study of an outbreak of influenza B virus in Wenzhou from 2011 to 2014 revealed that 163 (5.58 %) of 2921 samples were influenza B positive. Sequencing of the hemagglutinin and neuraminidase genes showed substitutions at the amino acid level. Phylogenetic analysis revealed co-circulation of the B/Victoria and B/Yamagata lineages in the Wenzhou area from 2011 to 2014. Multiple viral introductions from both Chinese and international sources played important roles in endemic co-circulation and transmission in coastal southeastern China.
To study the effect of testosterone undecanoate (TU) injection on spermatogenesis in rats.Twenty adult SD rats received vehicle or TU (8 mg/kg, 19 mg/kg or 625 mg/kg) injection, im, every 15 days for 60 days, and another 38 animals received similar treatments for 130 days with half of them undergoing a recovery phase of 120 days (5 rats for each treatment). At the end of the treatment, testes were removed and the diameter of the seminiferous tubules and the number of late elongated spermatids (steps 15-19) per testis were estimated with stereological methods as a measure of the spermatogenic efficiency.Low dose (8 mg/kg) TU treatment virtually had no effect on spermatogenesis. A dose of 19 mg/kg slightly suppressed spermatogenesis 60 days after treatment, and severe suppression occurred after another 70 days of dosing. Spermatogenesis was completely recovered at the end of the recovery phase. Large dose (625 mg/kg) TU treatment did not significantly affect spermatogenesis and was well tolerated by animals.TU injection reversibly suppresses spermatogenesis in rats.
Background: Ras-related C3 botulinum toxin substrate 3 (Rac3) is overexpressed in malignancies and promotes tumor progression. However, the correlations between Rac3 expression and the clinicopathological characteristics and prognoses of patients with bladder cancer (BC) remain unclear. Methods: Data from The Cancer Genome Atlas (TCGA) were used to analyze Rac3 expression in BC and normal bladder tissues and validated using the Oncomine database, quantitative real-time PCR (qRT-PCR) and western blot. The Kaplan-Meier method was used to analyze the relationship between Rac3 expression and the prognosis of patients with BC. Cox univariate and multivariate analyses of BC patients overall survival (OS) were performed. Signaling pathways that potentially mediate Rac3 activity in BC were then analyzed by gene set enrichment analysis (GSEA). Results: The Rac3 expression in BC tissues was significantly higher than that in normal bladder tissues. Rac3 expression was significantly correlated with grade and stage. Overexpression of Rac3 was associated with a poor prognosis. GSEA showed that the cell cycle, DNA replication, p53 signaling pathway and mismatch repair were differentially enriched in the high Rac3 expression phenotype. The qRT-PCR and western blot results confirmed that the Rac3 expression in BC tissues was higher than that in normal bladder tissues. Conclusion: Rac3 is highly expressed in BC, which is related to the advanced clinicopathological variables and adverse prognosis of patients with BC. These results provide a new therapeutic target for BC.
Abnormal autophagy is closely related to the development of cancer. Many studies have demonstrated that autophagy plays an important role in biological function in clear cell renal cell carcinoma (ccRCC). This study aimed to construct a prognostic signature for ccRCC based on autophagy-related genes (ARGs) to predict the prognosis of ccRCC. Differentially expressed ARGs were obtained from ccRCC RNA-seq data in The Cancer Genome Atlas (TCGA) database. ARGs were enriched by gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG). The prognostic ARGs used to construct the risk score models for overall survival (OS) and disease-free survival (DFS) were identified by Cox regression analyses. According to the median value of the risk score, patients were divided into a high-risk group and a low-risk group. The OS and DFS were analyzed by the Kaplan-Meier method. The predictive accuracy was determined by a receiver operating characteristic (ROC) curve analysis. Additionally, we performed stratification analyses based on different clinical variables and evaluated the correlation between the risk score and the clinical variables. The differentially expressed ARGs were mainly enriched in the platinum drug resistance pathway. The prognostic signatures based on 11 ARGs for OS and 5 ARGs for DFS were constructed and showed that the survive time was significantly shorter in the high-risk group than in the low-risk group (P < 0.001). The ROC curve for OS exhibited good predictive accuracy, with an area under the curve value of 0.738. In the stratification analyses, the OS time of the high-risk group was shorter than that of the low-risk group stratified by different clinical variables. In conclusion, an autophagy-related signature for OS we constructed can independently predict the prognosis of ccRCC patient, and provide a deep understanding of the potential biological mechanisms of autophagy in ccRCC.
Coloration in apple (Malus×domestica) flesh is mainly caused by the accumulation of anthocyanin. Anthocyanin is biosynthesized through the flavonoid pathway and regulated by MYB, bHLH, and WD40 transcription factors (TFs). Here, we report that the HD-Zip I TF MdHB1 was also involved in the regulation of anthocyanin accumulation. MdHB1 silencing caused the accumulation of anthocyanin in 'Granny Smith' flesh, whereas its overexpression reduced the flesh content of anthocyanin in 'Ballerina' (red-fleshed apple). Moreover, flowers of transgenic tobacco (Nicotiana tabacum 'NC89') overexpressing MdHB1 showed a remarkable reduction in pigmentation. Transient promoter activation assays and yeast one-hybrid results indicated that MdHB1 indirectly inhibited expression of the anthocyanin biosynthetic genes encoding dihydroflavonol-4-reductase (DFR) and UDP-glucose:flavonoid 3-O-glycosyltransferase (UFGT). Yeast two-hybrid and bimolecular fluorescence complementation determined that MdHB1 acted as a homodimer and could interact with MYB, bHLH, and WD40 in the cytoplasm, consistent with its cytoplasmic localization by green fluorescent protein fluorescence observations. Together, these results suggest that MdHB1 constrains MdMYB10, MdbHLH3, and MdTTG1 to the cytoplasm, and then represses the transcription of MdDFR and MdUFGT indirectly. When MdHB1 is silenced, these TFs are released to activate the expression of MdDFR and MdUFGT and also anthocyanin biosynthesis, resulting in red flesh in 'Granny Smith'.