The low charge separation and transfer of g-C3N4 hinders its industrial application in photocatalytic hydrogen evolution. Here, we design a novel co-catalyst strategy to integrate Ag2Se nanoparticles in situ on the surface of g-C3N4. The optimized photocatalyst, 15% Ag2Se/g-C3N4, demonstrates remarkable photocatalytic efficiency in the hydrogen evolution rate, reaching to 1102.8 μmol·g−1·h−1, 7 times higher than g-C3N4. To further elucidate the photocatalytic activity of 15% Ag2Se/g-C3N4, we present a possible mechanism based on various characterizations and density functional theory calculations. This research offers potential insights for the future development of silver chalcogenide composites in photocatalysis.
Acute kidney injury (AKI) can lead to loss of kidney function and a substantial increase in mortality. The burst of reactive oxygen species (ROS) plays a key role in the pathological progression of AKI. Mitochondrial-targeted antioxidant therapy is very promising because mitochondria are the main source of ROS in AKI. Antioxidant nanodrugs with actively targeted mitochondria have achieved encouraging success in many oxidative stress-induced diseases. However, most strategies to actively target mitochondria make the size of nanodrugs too large to pass through the glomerular system to reach the renal tubules, the main damage site of AKI. Here, an ultra-small Tungsten-based nanodots (TWNDs) with strong ROS scavenging can be very effective for treatment of AKI. TWNDs can reach the tubular site after crossing the glomerular barrier, and enter the mitochondria of the renal tubule without resorting to complex active targeting strategies. To our knowledge, this is the first time that ultra-small negatively charged nanodots can be used to passively target mitochondrial therapy for AKI. Through in-depth study of the therapeutic mechanism, such passive mitochondria-targeted TWNDs are highly effective in protecting mitochondria by reducing mitochondrial ROS and increasing mitophagy. In addition, TWNDs can also reduce the infiltration of inflammatory cells. This work provides a new way to passively target mitochondria for AKI, and give inspiration for the treatment of many major diseases closely related to mitochondria, such as myocardial infarction and cerebral infarction.
The high incidence of kidney disease caused by various factors (like COVID-19) has triggered an extreme desire for wearable artificial kidneys (WAK). Nevertheless, the dialysate regeneration system in WAK presents very low adsorption capacity of urea, and must rely on the help of urease and zirconium compounds, which make the device too complex and costly to limit the application. In this study, we employed the adsorption activity of defect-rich MoS2 nanosheets with widened interlayer spacing (WDR-MoS2) for the elimination of three crucial uremic toxins (urea, creatinine, and uric acid). The high adsorption performances of WDR-MoS2 were owing to the presence of abundant S atoms between the two MoS2 sheets that can efficiently adsorb uremic toxins through the unique S-N bond. Besides, widening layer spacing of MoS2 was like adjusting the aperture of a filter, which could not only speed up the transport of uremic toxins but also prevent the passage of large-size molecules (like protein). Thus, the WDR-MoS2 could neither affect cell viability nor produce hemolysis and coagulation in the blood. Finally, a home-made WDR-MoS2 fixed-bed system without urease and zirconium compounds was used to efficiently remove uremic toxins in the dialysate. WDR-MoS2 is expected to fundamentally solve the material science problems in WAK and provides a new design idea for the development of high-performance 2D material-based adsorbents.
Selectivity is still a major problem in gas sensors. In this study, we fabricated a novel sensor material, tin oxide (SnO2) nanoparticle decorated tin selenide (SnSe) nanosheets (SnO2/SnSe), via a simple solvothermal method. SnO2 nanoparticles of size ∼10 nm were anchored on the surface of SnSe nanosheets. The gas-sensing performances of SnO2/SnSe composites calcined at different temperatures were compared. Methylbenzene-sensing performance analysis performed at different temperatures and concentrations showed that SnO2/SnSe composites exhibited preferable sensitivity, excellent selectivity, and a good response rate. The improved sensing properties, especially the selectivity, are attributed to the appropriate heterojunction of SnO2 nanoparticle decorated SnSe nanosheets.