Recently, new therapeutics have been developed for hepatocellular carcinoma (HCC). However, the overall survival rate of HCC patients is still unsatisfactory; one of the reasons for this is the high frequency of recurrence after radical treatment. Consequently, to improve prognosis, it will be important to develop a novel anti-tumor agent that is especially effective against HCC recurrence. For clinical application, long-term safety, together with high anti-tumor efficacy, is desirable. Recent studies have proposed menahydroquinone-4 1,4-bis-N,N-dimethylglycinate hydrochloride (MKH-DMG), a prodrug of menahydroquinone-4 (MKH), as a promising candidate for HCC treatment including the inhibition of recurrence; MKH-DMG has been shown to achieve good selective accumulation of MKH in tumor cells, resulting in satisfactory inhibition of cell proliferation in des-γ-carboxyl prothrombin (DCP)-positive and DCP-negative HCC cell lines. In a spleen-liver metastasis mouse model, MKH-DMG has been demonstrated to have anti-proliferation and anti-metastatic effects in vivo. The characteristics of MKH-DMG as a novel anti-HCC agent are presented in this review article.
Bezafibrate (BF) has been used to treat biliary damage, particularly in patients with primary biliary cirrhosis (PBC), and its clinical efficacy has been demonstrated. The mechanism of action is thought to involve activation of the PPARalpha-MDR3-phospholipid (PL) secretion pathway. We tried to confirm this hypothesis in patients with hepatobiliary disease.The levels of serum gamma-glutamyl transpeptidase and alkaline phosphatase, and those of bile components were examined before and after BF administration in patients with obstructive jaundice undergoing percutaneous transhepatic biliary drainage (PTBD). Hepatic expression of PPARalpha and MDR3 was quantified by real-time PCR in patients with PBC or non-alcoholic fatty liver disease (NAFLD).In patients with obstructive jaundice, BF decreased the serum levels of biliary enzymes and increased the bile concentration of PL. In patients with PBC or NAFLD, the expression levels of MDR3 were already up-regulated before starting the BF treatment. Although BF treatment did not further up-regulate MDR3 expression in NAFLD patients, PPARalpha expression was significantly increased.BF enhanced the secretion of PL into bile in cholestatic patients undergoing PTBD. However, in patients with PBC or NAFLD, diseases that represent cholesterol overload, MDR3 was already expressed at a high level to compensate for bile acids overproduction, and its expression was hardly affected by BF. In patients with chronic liver diseases such as PBC, BF may induce clinical effects via mechanisms independent of PL secretion.
6-Paradol is known to activate thermogenesis in brown adipose tissue (BAT), and paradol analogues with different acyl chain lengths possess different pungency thresholds. In this study, the influence of the acyl chain length on the antiobesity activity of the paradol analogues was investigated. The antiobesity activity of 6-paradol in mice fed a high-fat diet for 8 weeks was greater than that of dihydrocapsiate. A comparison of the antiobesity activities of zingerone and 6-paradol showed that the length of the acyl chain in the paradol analogue was important for strong activity. Furthermore, the antiobesity activities of 6-, 8-, and 12-paradol appeared to decrease in an acyl chain length-dependent manner. The mechanism of the antiobesity activity of 6-paradol was enhanced by increasing levels of energy metabolism in the BAT, as well as an increase in the expression of uncoupling proteins 1 via the activation of sympathetic nerve activity.
Epidermal growth factor receptor (EGFR) inhibitors frequently cause severe skin rash as a side effect, which is a critical burden for patients who continuously receive drug treatments. Several recent clinical trials have shown that vitamin K is effective against these side effects; however, the underlying mechanisms remain unclear. EGFR inhibitors induce C-C motif chemokine ligand 5 (CCL5) in dermopathy. We hypothesized that menahydroquinone-4 (MKH), the active form of menaquinone-4 (MK-4, vitamin K2(20)), supplied by biosynthesis or external delivery, is essential for the suppressive effect on CCL5. The aim of this study was to explore the underlying mechanisms governing the relieving effects of MKH against skin rashes caused by EGFR inhibitors. The responses generated by EGFR inhibitors and the effect of MKH derivatives (two ester derivatives and MK-4) on them were evaluated using human skin cell lines (HaCaT and HSC-1). EGFR inhibitors downregulated UbiA prenyltransferase domain-containing protein-1 (UBIAD1, MKH synthetase) expression and MKH biosynthesis. Knockdown of UBIAD1 or γ-glutamyl carboxylase and treatment with warfarin upregulated CCL5 expression. MKH derivatives suppressed the CCL5 expression induced by EGFR inhibitors. Our data strongly suggest that MKH is involved in suppressing CCL5 expression and alleviating the skin damage caused by EGFR inhibitors.
Daptomycin exhibits concentration-dependent antibacterial activity. By monitoring daptomycin serum concentrations, clinicians may be able to predict the effectiveness of treatments for infections more accurately. However, it has been reported that daptomycin concentrations in plasma samples stored at -20°C decrease approximately 25% after 4 weeks. The aim of this study was to evaluate the stability of daptomycin in serum at various temperatures.Daptomycin serum samples were prepared and stored at different temperatures. The stability of daptomycin under various conditions was evaluated by sequential measurements of concentration.Although the loss of concentration of daptomycin in serum samples stored in freezers (-80°C and -20°C) was less than 10% after 168days (6 months), the concentrations in samples stored in a refrigerator (4°C) decreased by more than 70% over the same period. Furthermore, daptomycin concentrations in serum samples stored at close to body temperature (35°C, 37°C, and 39°C) decreased by more than 50% after only 24h.The results of the present study demonstrate that the measurement of serum concentrations of daptomycin needs to be performed rapidly. Furthermore, the degradation of daptomycin in serum may be involved in its elimination from the living body.