A new and simple technique for the determination of the focal length of positive lenses and concave spherical surfaces by Talbot interferometry is described. Results of measurements are presented. We show that high measurement accuracy can be achieved with this technique.
Photorefractive crystals offer several attractive features such as high resolution and in situ processing. As the images are erasable, these crystals are suitable for read-write applications and hence find potential use in speckle photography, image processing and holography. The BaTiO3 crystal as recording medium has been extensively used as a novelty filter for real-time in-plane displacement measurements employing two beam coupling configuration. This paper presents new optical configurations in speckle shear photography to measure in-plan displacement and the strain in real time using BaTiO3 crystal as recording medium. Speckle photography studies are made using a simple two-beam coupling configuration. In speckle shear photography, a diffused object illuminated with two parallel narrow laser beams is imaged inside the crystal, and a pump beam is added at this plane. The speckle patterns due to each beam and the pump beam produce index gratings. When the object is deformed, the speckle patterns shift consequently. We now have four speckle fields: two generated from the interaction of pump beam with the index gratings and two pertaining to deformed states directly transmitted through the crystal. Thus, the fields from respective points on the object interfere after passage through the crystal and produce the Young's fringe patterns. Due to strain, the fringes in each pattern are of different width and orientation, resulting in the generation of a moire pattern. The strain is obtained from the width and orientation of the fringes in the moire pattern. The experiments are conducted on a specimen with a notch, which is subjected to tensile loading. The in-plane displacement is measured separately in another experiment. Time evolution of the growth and the decay of the signal beam also is studied. The above studies are carried out at different laser wavelengths and the results are compared.
This paper presents the use of holographic optical elements for the measurement of slope and curvature by video techniques. the curvature fringes occur as moire between two speckle slope patterns. A good agreement between theory and experimental results is demonstrated.
Phase-shifting interferometry with a Fourier fringe analysis technique is implemented to analyze Talbot interferometric fringes and to evaluate the focal length of a lens. A four-step algorithm is used to obtain the phase map of the lens. The slope of the phase map is related to the focal length, and it is from this relationship that we evaluate the focal length. Experimental results are presented. Our experimental study suggests that phase-shifting Talbot interferometry combined with a Fourier fringe analysis technique can be advantageously used to improve the accuracy of measurement.
An improved real-time optical image subtraction method based on the work of Zhao and Liu ["Real-time optical interferometric image subtraction by wave polarization," Appl. Opt. 21, 3864 (1982)] is proposed. A hologram of the beams from a Wollaston prism is recorded and used as an optical element in the system. It is shown that a dark field over a larger area for image subtraction can be obtained with such a system.