In August 2004, a domestic water well was drilled into granitoid metamorphic rocks 5.38 kilometers southwest of Tyngsborough, Massachusetts, on Scribner Hill. According to well driller Roger Skillings of Skillings and Sons, Inc. (oral commun., 2005), no water was encountered during drilling and when the borehole reached a depth of approximately 305.1 m, a blue flame exploded out of the well casing and ignited the drill rig, resulting in a total loss of the equipment (cover). Follow up water quality studies by the Massachusetts Department of Environmental Protection detected low levels of methane in the groundwater extracted from the well. Discussions with the Stephen Hallem, Massachusetts Departments of Environmental Protection and David Wunsch, the New Hampshire State Geologist, prompted the USGS to further investigate this methane occurrence in granitoid rock. Borehole characterization and water quality sampling reported here were completed in May and June 2006, in an effort to identify the potential source of the methane. Follow up samples yielded no detectable methane, and for that reason this report presents a brief summary of our preliminary findings.
The Leetown Science Center is a research facility operated by the U.S. Geological Survey that occupies approximately 455-acres near Kearneysville, Jefferson County, West Virginia. Aquatic and fish research conducted at the Center requires adequate supplies of high-quality, cold ground water. Three large springs and three production wells currently (in 2006) supply water to the Center. The recent construction of a second research facility (National Center for Cool and Cold Water Aquaculture) operated by the U.S. Department of Agriculture and co-located on Center property has placed additional demands on available water resources in the area. A three-dimensional steady-state finite-difference ground-water flow model was developed to simulate ground-water flow in the Leetown area and was used to assess the availability of ground water to sustain current and anticipated future demands. The model also was developed to test a conceptual model of ground-water flow in the complex karst aquifer system in the Leetown area. Due to the complexity of the karst aquifer system, a multidisciplinary research study was required to define the hydrogeologic setting. Geologic mapping, surface- and borehole-geophysical surveys, stream base-flow surveys, and aquifer tests were conducted to provide the hydrogeologic data necessary to develop and calibrate the model. It would not have been possible to develop a numerical model of the study area without the intensive data collection and methods developments components of the larger, more comprehensive hydrogeologic investigation. Results of geologic mapping and surface-geophysical surveys verified the presence of several prominent thrust faults and identified additional faults and other complex geologic structures (including overturned anticlines and synclines) in the area. These geologic structures are known to control ground-water flow in the region. Results of this study indicate that cross-strike faults and fracture zones are major avenues of ground-water flow. Prior to this investigation, the conceptual model of ground-water flow for the region focused primarily on bedding planes and strike-parallel faults and joints as controls on ground-water flow but did not recognize the importance of cross-strike faults and fracture zones that allow ground water to flow downgradient across or through less permeable geologic formations. Results of the ground-water flow simulation indicate that current operations at the Center do not substantially affect either streamflow (less than a 5-percent reduction in annual streamflow) or ground-water levels in the Leetown area under normal climatic conditions but potentially could have greater effects on streamflow during long-term drought (reduction in streamflow of approximately 14 percent). On the basis of simulation results, ground-water withdrawals based on the anticipated need for an additional 150 to 200 gal/min (gallons per minute) of water at the Center also would not seriously affect streamflow (less than 8 to 9 percent reduction in streamflow) or ground-water levels in the area during normal climatic conditions. During drought conditions, however, the effects of current ground-water withdrawals and anticipated additional withdrawals of 150 to 200 gal/min to augment existing supplies result in moderate to substantial declines in water levels of 0.5-1.2 feet (ft) in the vicinity of the Center's springs and production wells. Streamflow was predicted to be reduced locally by approximately 21 percent. Such withdrawals during a drought or prolonged period of below normal ground-water levels would result in substantial declines in the flow of the Center's springs and likely would not be sustainable for more than a few months. The drought simulated in this model was roughly equivalent to the more than 1-year drought that affected the region from November 1998 through February 2000. The potential reduction in streamflow is a result of capture of ground water tha
Audio-magnetotelluric soundings collected near and within the Edwards Aquifer recharge area<br>along Seco Creek in Medina County, Texas show the electrical structure of the Glen Rose and Edwards<br>Group rocks within the uppermost 800 meters. These soundings were collected to test the efficacy of the<br>technique, provide ground truth for an airborne survey, and map hydrogeologic features along Seco<br>Creek where most of the surface water runoff is captured by the Edwards aquifer. Electrical sections<br>generated from the data suggest several three-dimensional geologic structures. These structures are part<br>of one of the nations largest limestone groundwater aquifers that discharges almost 1 million m3 per day<br>providing water to millions of people in the San Antonio/Austin region. The data indicate northeasttrending<br>gradients consistent with the mapped geologic structures associated with the Balcones fault<br>system.
Sandstones, siltstones, and limestones that are Pennsylvanian to Permian in age underlie the southern part of the Colorado Plateau near Flagstaff, Arizona, and contain a complex regional aquifer that has become increasingly important as a source of water for domestic, municipal, and recreational uses. Ground-water flow in the regional aquifer is poorly understood in this area because (1) depth of the aquifer limits exploratory drilling and testing and (2) the geologic structure increases the complexity of the aquifer characteristics and the ground-water flow system. Four methods were used to improve the understanding of the hydrogeology of the regional aquifer near Flagstaff. • Remote-sensing techniques and geologic mapping provided data to identify many structural features that indicate a more complex structural environment and history than previously realized. • Data from surface-geophysical techniques that included ground-penetrating radar, seismic reflection and seismic refraction, and square-array resistivity, verified that some of the geologic structures expressed at land surface propagate deep into the subsurface and through the principal water-bearing zones of the regional aquifer at near-vertical angles. • A well and spring inventory, borehole-geophysical methods, and well and aquifer tests provided additional information relating aquifer and ground-water flow characteristics to geologic structure. • Water-chemistry data, which included major ion, nutrient, trace-element, and radioactive and stable-isotope analyses, provided an independent means of verifying the hydrogeologic characteristics of the aquifer and were used to determine recharge and discharge areas, groundwater movement, and ground-water age. Ground-water recharge occurs throughout the area but is greatest at higher altitudes where precipitation is greater and in areas where heavily fractured rock units of the aquifer are exposed. The estimated annual average recharge to the regional aquifer in the study area is about 290,000 acre-feet. Ground water flows laterally and vertically through pore spaces in the rock and along faults and other fractures from high-altitude areas in the southern part of the study area to regional drains north of the study area along the Little Colorado and Colorado Rivers, and to drains south of the study area along Oak Creek and the Verde Valley. Ground-water discharge in these areas—about 400,000 acre-feet per year—exceeds the annual recharge to the aquifer in the Flagstaff area, but ground water from areas outside the study area contributes to this discharge as well. The saturated thickness of the regional aquifer averages about 1,200 feet, and the amount of water in storage could be as much as 4,800,000 acrefeet, or about 10 percent of the total volume of the aquifer. The quality of water in the regional aquifer in terms of dissolved-solids concentrations is good for most uses throughout the area. Dissolvedsolids concentrations generally are less than 500 milligrams per liter. Water in the regional aquifer is primarily a calcium magnesium bicarbonate type. In some areas near the Rio de Flag, the water has significant nitrate and chloride components, which indicate direct recharge in these areas from the Rio de Flag. Oxygen and deuterium data indicate a common recharge source for water in the aquifer and that some sites receive recharge from surface waters where evaporation has occurred. Estimated carbon-14 ages and tritium activities indicate ground-water ages from less than 200 years in the Lake Mary area to more than 5,000 years in the Wupatki area. The regional aquifer is heterogeneous and anisotrophic and has a complex ground-water flow system. The most productive water-bearing material tends to be fine- to medium-grained sandstones, and ground-water flow and potential well yields are related to geologic structure. Fracturing associated with structural deformation increases recharge locally and also increases the potential for high well yields. Surface-geophysical techniques provided information on the orientation of high-angle, deep-seated structure in the saturated zone. Borehole-geophysical data identified horizontal to near-horizontal fractures as significant components of the fracture-flow system not apparent in the surface-geophysical data. Structural features that strike northwest appear to be areas that have the greatest potential for high well yields. A north-northeastward-striking structure may be just as promising, but additional data are needed to verify this relation.
This map covers the drainage basins of the upper Current River and the Eleven Point River in the Ozark Plateaus physiographic province of southeastern Missouri. The two surface drainage basins are contiguous in their headwaters regions, but are separated in their lower reaches by the lower Black River basin in the southeast corner of the map area. Numerous dye-trace studies demonstrate that in the contiguous headwaters areas, groundwater flows from the Eleven Point River basin into the Current River basin. Much of the groundwater discharge of the Eleven Point River basin emanates from Big Spring, located on the Current River. This geologic map and cross sections were produced to help fulfill a need to understand the geologic framework of the region in which this subsurface flow occurs. The map includes all of the Ozark National Scenic Riverways, a national park created by an Act of Congress in 1964 to protect 134 miles of the Current and Jacks Fork Rivers in south-central Missouri. Located within the park are numerous large springs, including Big Spring, the largest spring in Missouri and one of the ten largest springs in the world. Also within the map area is Greer Spring, which is the main source of the Eleven Point River. Greer Spring is the largest spring on National Forest land in the United States. During flood, flow from Greer Spring is almost as large, volumetrically, as that from Big Spring. The Wild and Scenic Rivers Act in 1968 established a 44-mile section of the Eleven Point River as the Eleven Point National Scenic River, which is entirely within the boundaries of this map. Potentially economic mineral resources are present in the subsurface in the map area. Exploration drill-hole data indicate that anomalously high concentrations of base-metal sulfides locally occur within the Cambrian Bonneterre Formation. The geologic setting of these anomalous concentrations is similar to that found in the Viburnum Trend, part of the largest lead-mining district in the world. The southernmost part of the Viburnum Trend extends into the northern part of the map area and is exploited by the Sweetwater Mine. Undeveloped and potentially economic occurrences of base metals are known also beneath Blair Creek, a tributary to the Current River in the north-central part of the map area.
The U.S. Geological Survey’s Leetown Science Center and the co-located U.S. Department of Agriculture’s National Center for Cool and Cold Water Aquaculture both depend on large volumes of cold clean ground water to support research operations at their facilities. Currently, ground-water demands are provided by three springs and two standby production wells used to augment supplies during periods of low spring flow. Future expansion of research operations at the Leetown Science Center is dependent on assessing the availability and quality of water to the facilities and in locating prospective sites for additional wells to augment existing water supplies. The hydrogeology of the Leetown area, West Virginia, is a structurally complex karst aquifer. Although the aquifer is a karst system, it is not typical of most highly cavernous karst systems, but is dominated by broad areas of fractured rock drained by a relatively small number of solution conduits. Characterization of the aquifer by use of fluorometric tracer tests, a common approach in most karst terranes, therefore only partly defines the hydrogeologic setting of the area. In order to fully assess the hydrogeology and water quality in the vicinity of Leetown, a multi-disciplinary approach that included both fractured rock and karst research components was needed. The U.S. Geological Survey developed this multi-disciplinary research effort to include geologic, hydrologic, geophysical, geographic, water-quality, and microbiological investigations in order to fully characterize the hydrogeology and water quality of the Leetown area, West Virginia. Detailed geologic and karst mapping provided the framework on which hydrologic investigations were based. Fracture trace and lineament analysis helped locate potential water-bearing fractures and guided installation of monitoring wells. Monitoring wells were drilled for borehole geophysical surveys, water-quality sampling, water-level measurements, and aquifer tests to characterize the quality of water and the hydraulic properties of the aquifer. Surface geophysical surveys provided a 3-dimensional view of bedrock resistivity in order to assess geologic and lithologic controls on ground-water flow. Borehole geophysical surveys were conducted in monitoring wells to assess the storage and movement of water in subsurface fractures. Numerous single-well, multi-well, and straddle packer aquifer tests and step-drawdown tests were conducted to define the hydraulic properties of the aquifer and to assess the role of bedrock fractures and solution conduits in the flow of ground water. Water samples collected from wells and springs were analyzed to assess the current quality of ground water and provide a baseline for future assessment. Microbiological sampling of wells for indicator bacteria and human and animal DNA provided an analysis of agricultural and suburban development impacts on ground-water quality. Light detection and ranging (LiDAR) data were analyzed to develop digital elevation models (DEMs) for assessing sinkhole distribution, to provide elevation data for development of a ground-water flow model, and to assess the distribution of major fractures and faults in the Leetown area. The flow of ground water in the study area is controlled by lithology and geologic structure. Bedrock, especially low permeability units such as the shale Martinsburg Formation and the Conococheague Limestone, act as barriers to water flowing down gradient and across bedding. This retardation of cross-strike flow is especially pronounced in the Leetown area, where bedding typically dips at steep angles. Highly permeable fault and fracture zones that disrupt the rocks in cross-strike directions provide avenues through which ground water can flow laterally across or through strata of low primary permeability. Significant strike parallel thrust faults and cross-strike faults typically coincide with larger solution conduits and act as drains for the more pervasive network of interconnected diffuse fractures. Results of borehole geophysical surveys indicate that although numerous fractures may intersect a borehole, only one or two of the fractures typically transmit most of the water to a well. The diffuse-flow dominated network of fractures that provides the majority of storage occupies only a small proportion of the total aquifer volume but constitutes the majority of porosity within the aquifer. Solution conduits, while occupying a relatively small volume of the overall aquifer, are especially important because they serve as primary drains for the ground-water flow system. Surface resistivity maps and cross-sectionsshow anomalous areas of low resistivities coincident with the prevailing geologic strike at N. 20º E., with major cross-strike faults, and with major springs in the region. Transmissivity derived from straddle packer tests was highly variable, and ranged over three orders of magnitude (1.8 x 10-6 to 5.9 x 10-3 ft2/d) in diffuse-flow fractures. A similar large variability in transmissivity was documented by single- and multi-well aquifer tests conducted in conduit-flow dominated portions of the aquifer (2.0 x 103 to 1.4 x 104 ft2/d) in lowland areas immediately adjacent to the Leetown Science Center. A stream-gaging station installed on Hopewell Run near the point where the stream exits the Leetown watershed indicates average daily streamflow for the Hopewell Run of approximately 11.2 ft3/s, and ranged from a minimum of 1.80 ft3/s on September 28, 2005, to a maximum of 73.0 ft3/s on December 11, 2003. Base-flow (ground-water) discharge surveys identified numerous small seeps adjacent to streams in the area. Hydrographs of the stage of Balch Spring show rapid response to individual storms. Strong correlation of the flow of Hopewell Run and Balch Spring indicates the nearby losing stream reach is partly responsible for higher fluctuations in the stage of Balch Spring. A water budget for the study period (2003-2005), based on measured precipitation and hydrograph analyses, is expressed as Precipitation (38.60 in/yr) = Surface Runoff (1.36 in/yr) + Ground-Water Discharge (17.73 in/yr) + Evapotranspiration (24.23 in/yr) – Change in storage (4.72 in/yr). Flow of ground water through the epikarst, a shallow zone of intensely weathered rock and regolith, can be rapid (on the order of days or weeks) as flow is concentrated in solution conduits. Flow within the intermediate and deeper zones is typically much slower. Eight dye-tracer tests conducted in the Leetown area found ground-water flow patterns to be divergent, with velocities ranging from about 12.5 to 610 ft/day and a median velocity of 50 ft/day. Estimates of ground-water age in carbonate rocks in the region are on the order of 15 years in the shallower portions of the aquifer to 50 years or older for deeper portions of the aquifer. Shallow springs can have a significant component of fairly young water (< 5 years in age). Ground-water samples collected from 16 sites (12 wells and 4 springs) in the Leetown area were analyzed for more than 340 constituents. Only turbidity, indicator bacteria, and radon were typically present in concentrations exceeding U.S. Environmental Protection Agency (USEPA) drinking-water or aquatic life standards.