We present posterior sample-based cosmic microwave background (CMB) constraints from Planck LFI and WMAP observations derived through global end-to-end Bayesian processing. We use these samples to study correlations between CMB, foreground, and instrumental parameters, and we identify a particularly strong degeneracy between CMB temperature fluctuations and free-free emission on intermediate angular scales, which is mitigated through model reduction, masking, and resampling. We compare our posterior-based CMB results with previous Planck products, and find generally good agreement, but with higher noise due to exclusion of HFI data. We find a best-fit CMB dipole amplitude of $3362.7\pm1.4μK$, in excellent agreement with previous Planck results. The quoted uncertainty is derived directly from the sampled posterior distribution, and does not involve any ad hoc contribution for systematic effects. Similarly, we find a temperature quadrupole amplitude of $σ^{TT}_2=229\pm97μK^2$, in good agreement with previous results in terms of the amplitude, but the uncertainty is an order of magnitude larger than the diagonal Fisher uncertainty. Relatedly, we find lower evidence for a possible alignment between $\ell = 2$ and $\ell = 3$ than previously reported due to a much larger scatter in the individual quadrupole coefficients, caused both by marginalizing over a more complete set of systematic effects, and by our more conservative analysis mask. For higher multipoles, we find that the angular temperature power spectrum is generally in good agreement with both Planck and WMAP. This is the first time the sample-based asymptotically exact Blackwell-Rao estimator has been successfully established for multipoles up to $\ell\le600$, and it now accounts for the majority of the cosmologically important information. Cosmological parameter constraints are presented in a companion paper. (Abriged)
LiteBIRD, the Lite (Light) satellite for the study of B-mode polarization and Inflation from cosmic background Radiation Detection, is a space mission for primordial cosmology and fundamental physics. JAXA selected LiteBIRD in May 2019 as a strategic large-class (L-class) mission, with its expected launch in the late 2020s using JAXA's H3 rocket. LiteBIRD plans to map the cosmic microwave background (CMB) polarization over the full sky with unprecedented precision. Its main scientific objective is to carry out a definitive search for the signal from cosmic inflation, either making a discovery or ruling out well-motivated inflationary models. The measurements of LiteBIRD will also provide us with an insight into the quantum nature of gravity and other new physics beyond the standard models of particle physics and cosmology. To this end, LiteBIRD will perform full-sky surveys for three years at the Sun-Earth Lagrangian point L2 for 15 frequency bands between 34 and 448 GHz with three telescopes, to achieve a total sensitivity of 2.16 μK-arcmin with a typical angular resolution of 0.5° at 100 GHz. We provide an overview of the LiteBIRD project, including scientific objectives, mission requirements, top-level system requirements, operation concept, and expected scientific outcomes.
LiteBIRD, the Lite (Light) satellite for the study of B-mode polarization and Inflation from cosmic background Radiation Detection, is a space mission for primordial cosmology and fundamental physics. The Japan Aerospace Exploration Agency (JAXA) selected LiteBIRD in May 2019 as a strategic large-class (L-class) mission, with an expected launch in the late 2020s using JAXA's H3 rocket. LiteBIRD is planned to orbit the Sun-Earth Lagrangian point L2, where it will map the cosmic microwave background (CMB) polarization over the entire sky for three years, with three telescopes in 15 frequency bands between 34 and 448 GHz, to achieve an unprecedented total sensitivity of 2.2$\mu$K-arcmin, with a typical angular resolution of 0.5$^\circ$ at 100 GHz. The primary scientific objective of LiteBIRD is to search for the signal from cosmic inflation, either making a discovery or ruling out well-motivated inflationary models. The measurements of LiteBIRD will also provide us with insight into the quantum nature of gravity and other new physics beyond the standard models of particle physics and cosmology. We provide an overview of the LiteBIRD project, including scientific objectives, mission and system requirements, operation concept, spacecraft and payload module design, expected scientific outcomes, potential design extensions and synergies with other projects.
We present the first application of the Cosmoglobe analysis framework by analyzing 9-year $\mathit{WMAP}$ time-ordered observations using similar machinery as BeyondPlanck utilizes for $\mathit{Planck}$ LFI. We analyze only the $\mathit Q$-band (41 GHz) data and report on the low-level analysis process from uncalibrated time-ordered data to calibrated maps. Most of the existing BeyondPlanck pipeline may be reused for $\mathit{WMAP}$ analysis with minimal changes to the existing codebase. The main modification is the implementation of the same preconditioned biconjugate gradient mapmaker used by the $\mathit{WMAP}$ team. Producing a single $\mathit{WMAP}$ $\mathit Q$1-band sample requires 22 CPU-hrs, which is slightly more than the cost of a $\mathit{Planck}$ 44 GHz sample of 17 CPU-hrs; this demonstrates that full end-to-end Bayesian processing of the $\mathit{WMAP}$ data is computationally feasible. In general, our recovered maps are very similar to the maps released by the $\mathit{WMAP}$ team, although with two notable differences. In temperature we find a $\sim2\,\mathrm{\mu K}$ quadrupole difference that most likely is caused by different gain modeling, while in polarization we find a distinct $2.5\,\mathrm{\mu K}$ signal that has been previously called poorly-measured modes by the $\mathit{WMAP}$ team. In the Cosmoglobe processing, this pattern arises from temperature-to-polarization leakage from the coupling between the CMB Solar dipole, transmission imbalance, and sidelobes. No traces of this pattern are found in either the frequency map or TOD residual map, suggesting that the current processing has succeeded in modelling these poorly measured modes within the assumed parametric model by using $\mathit{Planck}$ information to break the sky-synchronous degeneracies inherent in the $\mathit{WMAP}$ scanning strategy.
Abstract A methodology to provide the polarization angle requirements for different sets of detectors, at a given frequency of a CMB polarization experiment, is presented. The uncertainties in the polarization angle of each detector set are related to a given bias on the tensor-to-scalar ratio r parameter. The approach is grounded in using a linear combination of the detector sets to obtain the CMB polarization signal. In addition, assuming that the uncertainties on the polarization angle are in the small angle limit (lower than a few degrees), it is possible to derive analytic expressions to establish the requirements. The methodology also accounts for possible correlations among detectors, that may originate from the optics, wafers, etc. The approach is applied to the LiteBIRD space mission. We show that, for the most restrictive case (i.e., full correlation of the polarization angle systematics among detector sets), the requirements on the polarization angle uncertainties are of around 1 arcmin at the most sensitive frequency bands (i.e., ≈ 150 GHz) and of few tens of arcmin at the lowest (i.e., ≈ 40 GHz) and highest (i.e., ≈ 400 GHz) observational bands. Conversely, for the least restrictive case (i.e., no correlation of the polarization angle systematics among detector sets), the requirements are ≈ 5 times less restrictive than for the previous scenario. At the global and the telescope levels, polarization angle knowledge of a few arcmins is sufficient for correlated global systematic errors and can be relaxed by a factor of two for fully uncorrelated errors in detector polarization angle. The reported uncertainty levels are needed in order to have the bias on r due to systematics below the limit established by the LiteBIRD collaboration.
We present cosmological parameter constraints as estimated using the Bayesian BeyondPlanck (BP) analysis framework. This method supports seamless end-to-end error propagation from raw time-ordered data to final cosmological parameters. As a first demonstration of the method, we analyze time-ordered Planck LFI observations, combined with selected external data (WMAP 33-61GHz, Planck HFI DR4 353 and 857GHz, and Haslam 408MHz) in the form of pixelized maps which are used to break critical astrophysical degeneracies. Overall, all results are generally in good agreement with previously reported values from Planck 2018 and WMAP, with the largest relative difference for any parameter of about 1 sigma when considering only temperature multipoles between 29
We describe the BeyondPlanck project in terms of motivation, methodology and main products, and provide a guide to a set of companion papers that describe each result in fuller detail. We implement a complete end-to-end Bayesian analysis framework for the Planck LFI observations. The primary product is a full joint posterior distribution $P(\omega|d)$, where $\omega$ represents the set of all free instrumental, astrophysical, and cosmological parameters. Notable advantages of this approach are seamless end-to-end propagation of uncertainties; accurate modeling of both astrophysical and instrumental effects in the most natural basis for each uncertain quantity; optimized computational costs with little or no need for intermediate human interaction between various analysis steps; and a complete overview of the entire analysis process within one single framework. We focus in particular on low-$\ell$ CMB polarization reconstruction with Planck LFI. We identify several important new effects that have not been accounted for in previous pipelines, including gain over-smoothing and time-variable and non-$1/f$ correlated noise in the 30 and 44 GHz channels. We find that all results are consistent with the $\Lambda$CDM model, and we constrain the reionization optical depth to $\tau=0.066\pm0.013$, with a low-resolution $\chi^2$ probability-to-exceed of 32%. This uncertainty is about 30% larger than the official pipelines, arising from taking into account a more complete instrumental model. The marginal CMB Solar dipole amplitude is $3362.7\pm1.4\mu\mathrm{K}$, where the error bar is derived directly from the posterior distribution without the need of any ad-hoc instrumental corrections. We are currently not aware of any significant unmodelled systematic effects remaining in the Planck LFI data, and, for the first time, the 44 GHz channel is fully exploited. (Abridged.)
We present the first model of full-sky polarized synchrotron emission that is derived from all WMAP and Planck LFI frequency maps. The basis of this analysis is the set of end-to-end reprocessed C OSMOGLOBE Data Release 1 (DR1) sky maps presented in a companion paper, which have significantly lower instrumental systematics than the legacy products from each experiment. We find that the resulting polarized synchrotron amplitude map has an average noise rms per 2° full width at half maximum (FWHM) beam of 3.2 μK at 30 GHz. This is 30% lower than the recently released B EYOND P LANCK model that included only LFI+WMAP Ka – V data, and 29% lower than the WMAP K -band map alone. The mean B -to- E power spectrum ratio is 0.39 ± 0.02, with amplitudes consistent with those measured previously by Planck and QUIJOTE. Assuming a power law model for the synchrotron spectral energy distribution and using the T – T plot method, we find a full-sky inverse noise-variance-weighted mean of the synchrotron polarized spectral index of β s = −3.07 ± 0.07 from the C OSMOGLOBE DR1 K band and 30 GHz, in good agreement with previous estimates. In summary, the novel C OSMOGLOBE DR1 synchrotron model is both more sensitive and systematically cleaner than similar previous models, and it has a more complete error description that is defined by a set of Monte Carlo posterior samples. We believe that these products are preferable over previous Planck and WMAP products for all synchrotron-related scientific applications, including simulations, forecasting, and component separation.
End-to-end simulations play a key role in the analysis of any high-sensitivity CMB experiment, providing high-fidelity systematic error propagation capabilities unmatched by any other means. In this paper, we address an important issue regarding such simulations, namely how to define the inputs in terms of sky model and instrument parameters. These may either be taken as a constrained realization derived from the data, or as a random realization independent from the data. We refer to these as Bayesian and frequentist simulations, respectively. We show that the two options lead to significantly different correlation structures, as frequentist simulations, contrary to Bayesian simulations, effectively include cosmic variance, but exclude realization-specific correlations from non-linear degeneracies. Consequently, they quantify fundamentally different types of uncertainties, and we argue that they therefore also have different and complementary scientific uses, even if this dichotomy is not absolute. Before BeyondPlanck, most pipelines have used a mix of constrained and random inputs, and used the same hybrid simulations for all applications, even though the statistical justification for this is not always evident. BeyondPlanck represents the first end-to-end CMB simulation framework that is able to generate both types of simulations, and these new capabilities have brought this topic to the forefront. The Bayesian BeyondPlanck simulations and their uses are described extensively in a suite of companion papers. In this paper we consider one important applications of the corresponding frequentist simulations, namely code validation. That is, we generate a set of 1-year LFI 30 GHz frequentist simulations with known inputs, and use these to validate the core low-level BeyondPlanck algorithms; gain estimation, correlated noise estimation, and mapmaking.