• TSS evaluated in HITL simulations using currently active controllers • TSS enables PBN in a mixed equipage environment, and under saturated traffic demand levels • TSS enables Best-Equipped, Best-Served: RNP vs RNAV equipage • TSS tech transfer to FAA Fall 2013
A human-in-the-loop simulation of an integrated set of time-based automation tools that provided precision scheduling, sequencing and ground-based merging and spacing functions was run in the fall of 2010. These functions were combined into the Terminal Area Precision Scheduling and Spacing (TAPSS) system. TAPSS consists of a scheduler and two suites of advisory tools, one for the Air Route Traffic Control Center (ARTCC, or Center) and one for Terminal Radar Approach Control (TRACON) operations. Both suites are designed to achieve maximum throughput and controllability of traffic. The subject airspace was the terminal area around Los Angeles airport (LAX) and the en route space immediately beyond. Scenario traffic was based on the demand from today's heavy arrival periods, and traffic levels were simulated that matched these or added five, ten or twenty percent to this amount. Eight retired, highly experienced controllers worked two final, three feeder and three en-route positions to deliver traffic to the two outboard arrival runways at LAX (24R and 25L). Although the main research question was whether controllers could safely control the traffic, their level of performance was also of interest and how the advanced tools facilitated or hindered their tasks. The results show that the TAPSS tools enabled higher airport throughput and a larger number of continuous descent operations from cruise to touchdown for the jet aircraft in the scenarios. This contrasts sharply with the "current day" operations in which the Center controllers utilize step-down descents to meter the aircraft. Reported workload levels were lower in the "TAPSS tools" condition than in the "current-day" condition and the TAPSS operations earned cautiously acceptable ratings, indicating the prototype tools have value.
Presents a collection of slides covering the following topics: terminal area precision scheduling and spacing system; TAPSSS; TRACON tools; air traffic control; aircraft control and airspace simulation.
NASA and the FAA have designed and developed and an automation tool known as the Traffic Management Advisor (TMA). The system was operationally evaluated at the Ft. Worth Air Route Traffic Control Center (ARTCC). The TMA is a time-based strategic planning tool that provides Traffic Management Coordinators and En Route Air Traffic Controllers the ability to efficiently optimize the capacity of a demand impacted airport. The TMA consists of trajectory prediction, constraint-based runway scheduling, traffic flow visualization and controllers advisories. The TMA was used and operationally evaluated for forty-one rush traffic periods during a one month period in the Summer of 1996. The evaluations included all shifts of air traffic operations as well as periods of inclement weather. Performance data was collected for engineering and human factor analysis and compared with similar operations without the TMA. The engineering data indicates that the operations with the TMA show a one to two minute per aircraft delay reduction during rush periods. The human factor data indicate a perceived reduction in en route controller workload as well as an increase in job satisfaction. Upon completion of the evaluation, the TMA has become part of the normal operations at the Ft. Worth ARTCC.
A computer-aiding concept for low-altitude helicopter flight was developed and evaluated in a real-time piloted simulation. The concept included an optimal control trajectory-generated algorithm based on dynamic programming, and a head-up display (HUD) presentation of a pathway-in-the-sky, a phantom aircraft, and flight-path vector/predictor symbol. The trajectory-generation algorithm uses knowledge of the global mission requirements, a digital terrain map, aircraft performance capabilities, and advanced navigation information to determine a trajectory between mission waypoints that minimizes threat exposure by seeking valleys. The pilot evaluation was conducted at NASA Ames Research Center's Sim Lab facility in both the fixed-base Interchangeable Cab (ICAB) simulator and the moving-base Vertical Motion Simulator (VMS) by pilots representing NASA, the U.S. Army, and the U.S. Air Force. The pilots manually tracked the trajectory generated by the algorithm utilizing the HUD symbology. They were able to satisfactorily perform the tracking tasks while maintaining a high degree of awareness of the outside world.
This paper provides a brief overview of the Air Traffic Management Technology Demonstration 1 (ATD-1) technologies. These technologies are comprised of ground-based automation tools and airborne automation tools. The ground-based automation tools are referred to as terminal sequencing and spacing (TSS). NASA is currently maturing TSS prior to transfeering it to the FAA. This paper discusses the status of the transfer.
Rotorcraft operating in high-threat environments fly close to the earth's surface to utilize surrounding terrain, vegetation, or man-made objects to minimize the risk of being detected by an enemy. The piloting of the rotorcraft is at best a very demanding task and the pilots need help from on-board automation tools in order to devote more time to mission-related activities. The Automated Nap-of-the-Earth (NOE) Flight Program is a cooperative NASA/Army program aimed at the development of technologies for enhancing piloted low-altitude/NOE flight path management and control through computer and sensor aiding. The long-term objective is to work towards achieving automation for aiding the pilot in NOE flight with a flight demonstration of resulting computer/sensor aiding concepts at an established course. The technology for pilot-centered NOE automation is not currently available. Success in automating NOE functions will depend on major breakthroughs in real-time flight path planning algorithms, effective methods for the pilot to interface to the automatic modes, understanding of visual images, sensor data processing/fusion, and sensor development. Our approach to developing the technologies required to solve this problem consist of the following phases: (1) algorithm development, (2) laboratory evaluation, (3) piloted ground simulation, and (4) evaluation in flight. An overview of the research in this area at NASA Ames Research Center is given.
In 2012, NASA and FAA jointly conducted a human-in-the-loop air traffic simulation to evaluate the utility of the Terminal Area Precision Scheduling and Spacing (TAPSS) system for supporting Performance-Based Navigation arrival operations during periods of congestion at a mid-sized airport. The TAPSS system is a trajectory-based strategic planning and tactical control tool that was developed to efficiently manage arrivals. For this study, the TAPSS system was enhanced to handle Required Navigation Performance arrivals. A baseline case, where none of the TAPSS system's advisories were provided, was run along with two different configurations of the TAPSS system with differing sets of controller advisory tools. The engineering data indicate that the TAPSS system has a potential to enable efficient Performance-Based Navigation arrival operations. The participating controllers found the TAPSS system's advisories useful. When controllers were given the full set of TAPSS advisory tools, 90% of Required Navigation Performance arrivals stayed on-path as compared to 87% in the baseline case, the average extra track distance of Area Navigation arrivals decreased by 36%, and the average number of controller voice communications decreased by 13%.
This slide presentation is an overview of the research for the Next Generation Air Transportation System (NextGen). Included is a review of the current air transportation system and the challenges of air transportation research. Also included is a review of the current research highlights and significant accomplishments.