Pancreatic ductal adenocarcinoma (PDAC) is characterized by an extremely poor prognosis, and its treatment remains a challenge. As the existing in vitro experimental models offer only a limited resemblance to human PDAC, there is a strong need for additional research tools to better understand PDAC tumor biology, particularly the impact of the tumor stroma. Here, we report for the first time the establishment and characterization of human PDAC-derived paired primary monolayer cultures of (epithelial) cancer cells (PCCs) and mesenchymal stellate cells (PSCs) derived from the same tumor by the outgrowth method. Characterization of cell morphology, cytostructural, and functional profiles and proteomics-based secretome analysis were performed. All PCCs harbored KRAS and TP53 mutations, and expressed cytokeratin 19, ki-67, and p53, while the expression of EpCAM and vimentin was variable. All PSCs expressed α-smooth muscle actin (α-SMA) and vimentin. PCCs showed a significantly higher growth rate and proliferation than PSCs. Secretome analysis confirmed the distinct nature of PCCs as compared to PSCs and allowed identification of potential molecular regulators of PSC-conditioned medium (PSC-CM)-induced migration of PCCs. Paired primary cultures of PCCs and PSCs derived from the same tumor specimen represent a novel experimental model for basic research in PDAC tumor biology.
Gemcitabine remains a cornerstone in chemotherapy of pancreatic ductal adenocarcinoma (PDAC) despite suboptimal clinical effects that are partly due to the development of chemoresistance. Pancreatic stellate cells (PSCs) of the tumor stroma are known to interact with pancreatic cancer cells (PCCs) and influence the progression of PDAC through a complex network of signaling molecules that involve extracellular matrix (ECM) proteins. To understand tumor-stroma interactions regulating chemosensitivity, the role of PSC-secreted fibronectin (FN) in the development of gemcitabine resistance in PDAC was examined. PSC cultures obtained from ten different human PDAC tumors were co-cultured with PCC lines (AsPC-1, BxPC-3, Capan-2, HPAF-II, MIA PaCa-2, PANC-1 and SW-1990) either directly, or indirectly via incubation with PSC-conditioned medium (PSC-CM). Gemcitabine dose response cytotoxicity was determined using MTT based cell viability assays. Protein expression was assessed by western blotting and immunofluorescence. PSC-CM secretome analysis was performed by proteomics-based LC-MS/MS, and FN content in PSC-CM was determined with ELISA. Radiolabeled gemcitabine was used to determine the capacity of PCCs to uptake the drug. In both direct and indirect co-culture, PSCs induced varying degrees of resistance to the cytotoxic effects of gemcitabine among all cancer cell lines examined. A variable degree of increased phosphorylation of ERK1/2 was observed across all PCC lines upon incubation with PSC-CM, while activation of AKT was not detected. Secretome analysis of PSC-CM identified 796 different proteins, including several ECM-related proteins such as FN and collagens. Soluble FN content in PSC-CM was detected in the range 175–350 ng/ml. Neither FN nor PSC-CM showed any effect on PCC uptake capacity of gemcitabine. PCCs grown on FN-coated surface displayed higher resistance to gemcitabine compared to cells grown on non-coated surface. Furthermore, a FN inhibitor, synthetic Arg-Gly-Asp-Ser (RGDS) peptide significantly inhibited PSC-CM-induced chemoresistance in PCCs via downregulation of ERK1/2 phosphorylation. The findings of this study suggest that FN secreted by PSCs in the ECM plays a key role in the development of resistance to gemcitabine via activation of ERK1/2. FN-blocking agents added to gemcitabine-based chemotherapy might counteract chemoresistance in PDAC and provide better clinical outcomes.
Nonalcoholic fatty liver disease (NAFLD) is the most common liver disease in Western and non-Western countries, but its pathogenesis is not fully understood.Based on the role of nicotinamide phosphoribosyltransferase (NAMPT) in fat and glucose metabolism and cell survival, we hypothesized a role for NAMPT/visfatin in the pathogenesis of NAFLD-related disease.We conducted clinical studies at a referral medical center in well-characterized NAFLD patients (n = 58) and healthy controls (n = 27). In addition we performed experimental in vitro studies in hepatocytes.We examined 1) the hepatic and systemic expression of NAMPT/visfatin in patients with NAFLD and control subjects, 2) the hepatic regulation of NAMPT/visfatin, and 3) the effect of NAMPT/visfatin on hepatocyte apoptosis.Our main findings were as follows. 1) Patients with NAFLD had decreased NAMPT/visfatin expression both systemically in serum and within the hepatic tissue, with no difference between simple steatosis and nonalcoholic steatohepatitis. 2) By studying the hepatic regulation of NAMPT/visfatin in wild-type and peroxisome proliferators-activated receptor (PPAR)alpha(-/-) mice as well as in hepatocytes, we showed that PPARalpha activation and glucose may be involved in the down-regulation of hepatic NAMPT/visfatin expression in NAFLD. 4) Within the liver, NAMPT/visfatin was located to hepatocytes, and our in vitro studies showed that NAMPT/visfatin exerts antiapoptotic effects in these cells, involving enzymatic synthesis of nicotinamide adenine dinucleotide.Based on these findings, we suggest a role for decreased NAMPT/visfatin levels in hepatocyte apoptosis in NAFLD-related disease.
Abstract In previous experiments the surface expression of epidermal growth factor (EGF) receptors in freshly isolated rat hepatocytes varied temperature‐ and time‐dependently and was depleted by monensin and cycloheximide in a way suggesting that a subpopulation of these receptors are subject to constitutive cycling (Glad‐haug and Christoffersen; 1988). We here report the finding that pretreatment of the hepatocytes with amiloride exerts marked effects on cellular EGF receptor movements. After 2 h incubation with 1 mM amiloride, the receptor level was approximately 270,000 sites/cell surface vs. 140,000 in the untreated cell, with no change in receptor affinity. Amiloride thus stabilized the surface EGF receptor pool at an elevated level. In cells pretreated with amiloride for 60 min, the relative endocytosis decreased from about 2.6 EGF molecules internalized per receptor during 15 min endocytosis in untreated cells to about 1.5 molecules/receptor in amiloride‐treated cells. These results suggest that amiloride causes an accumulation of EGF receptors at the hepatocyte surface due to inhibition of constitutive receptor internalization. In addition, it was found that in amiloride‐treated hepatocytes the phorbol ester TPA strongly inhibited high‐affinity EGF binding without affecting the total surface receptor number. In control cells, TPA did not consistently affect binding. Pretreatment with amiloride prevented surface EGF receptor depletion induced by cycloheximide and puromycin, but it did not significantly inhibit surface receptor depletion caused by monensin. Although the underlying mechanism of the amiloride effect on intracellular receptor trafficking is not clear, the results provide further evidence for a continuous, ligand‐independent EGF receptor cycling pathway in hepatocytes.
Several studies have described an increased cyclooxygenase-2 (COX-2) expression in pancreatic cancer, but the role of COX-2 in tumour development and progression is not clear. The aim of the present study was to examine expression of COX-2 in cancer cells and stromal cells in pancreatic cancer specimens, and to explore the role of PGE2 in pancreatic stellate cell proliferation and collagen synthesis.Immunohistochemistry and immunofluorescence was performed on slides from whole sections of tissue blocks using antibodies against COX-2 and α-smooth muscle actin (αSMA). Pancreatic stellate cells (PSC) were isolated from surgically resected tumour tissue by the outgrowth method. Cells were used between passages 4 and 8. Collagen synthesis was determined by [(3)H]-proline incorporation, or by enzyme immunoassay measurement of collagen C-peptide. DNA synthesis was measured by incorporation of [(3)H]-thymidine in DNA. Cyclic AMP (cAMP) was determined by radioimmunoassay. Collagen 1A1 mRNA was determined by RT-qPCR.Immunohistochemistry staining showed COX-2 in pancreatic carcinoma cells, but not in stromal cells. All tumours showed positive staining for αSMA in the fibrotic stroma. Cultured PSC expressed COX-2, which could be further induced by interleukin-1β (IL-1β), epidermal growth factor (EGF), thrombin, and PGE2, but not by transforming growth factor-β1 (TGFβ). Indirect coculture with the adenocarcinoma cell line BxPC-3, but not HPAFII or Panc-1, induced COX-2 expression in PSC. Treatment of PSC with PGE2 strongly stimulated cAMP accumulation, mediated by EP2 receptors, and also stimulated phosphorylation of extracellular signal-regulated kinase (ERK). Treatment of PSC with PGE2 or forskolin suppressed both TGFβ-stimulated collagen synthesis and PDGF-stimulated DNA synthesis.The present results show that COX-2 is mainly produced in carcinoma cells and suggest that the cancer cells are the main source of PGE2 in pancreatic tumours. PGE2 exerts a suppressive effect on proliferation and fibrogenesis in pancreatic stellate cells. These effects of PGE2 are mediated by the cAMP pathway and suggest a role of EP2 receptors.
Fetuin A has been associated with insulin resistance and the metabolic syndrome. We therefore explored the role of fetuin A in nonalcoholic fatty liver disease (NAFLD).Cross-sectional and intervention studies.We included 111 subjects with histologically proven NAFLD of whom 44 participated in a randomized, controlled trial with metformin. One hundred and thirty-one healthy subjects and 13 subjects undergoing hepatic surgery for metastatic cancer served as controls. Main outcome variables were circulating levels of fetuin A according to the presence of NAFLD, hepatic gene expression of fetuin A and key enzymes in glucose and lipid metabolism, and the effect of metformin on fetuin A levels in vivo and in vitro (HepG2 cells).Fetuin A levels were significantly higher in NAFLD patients compared with controls (324 ± 98 vs 225 ± 75 mg/l, P<0.001). NAFLD was a significant predictor of elevated fetuin A levels (β=174 (95% confidence interval: 110-234)) independent of body mass index, age, sex, fasting glucose, and triglycerides. Hepatic fetuin A mRNA levels correlated significantly with hepatic mRNA levels of key enzymes in lipid (sterol regulatory element-binding protein 1c, carnitine palmitoyltransferase 1) and glucose (phosphoenol pyruvate kinase 1, glucose-6-phosphatase) metabolism. Plasma fetuin A levels decreased significantly after metformin treatment compared with placebo (-40 ± 47 vs 15 ± 82 mg/l, P = 0.008). Metformin induced a dose-dependent decrease in fetuin A secretion in vitro.Fetuin A levels were elevated in NAFLD. Hepatic expression of fetuin A correlated with key enzymes in glucose and lipid metabolism. Metformin decreased fetuin A levels in vitro.
The aim of the study was to compare RNA sequencing data of sporadic nonfunctioning pancreatic neuroendocrine neoplasms (PNENs) to identify gene expression patterns that may be important for molecular differentiation of tumor aggressiveness.RNA sequencing was performed on samples of sporadic nonfunctioning PNENs, grouped as tumors with mild behavior (nonmetastatic and Ki67 < 5%) or aggressive behavior (metastatic and Ki67 ≥ 5%), on an Illumina Genome Analyzer II platform. Bioinformatic analyses were performed on the resulting data.Of 22,810 identified transcripts from protein-coding genes, a set of 309 genes were significantly differentially expressed between the 2 groups, of which 166 were upregulated and 143 downregulated in the aggressive disease group. Among the top protein-coding upregulated genes, we found genes encoding proteins involved in DNA packaging, ability to taste, chromosome structuring, cytoskeleton structuring, and cell-cell signaling. Among the top protein-coding downregulated genes, we found genes encoding proteins involved in neuronal differentiation, cytoskeleton structuring, cell-cell signaling, and immunological processes.A higher degree of tumor aggressiveness in sporadic nonfunctioning PNENs seems to be associated with upregulation of genes involved in regulation of the cell cycle and cell division. Small sample size and lack of a replication set are limitations of this study.