Recent advance in sequencing technology has enabled comprehensive profiling of genetic alterations in cancer. We have established a targeted sequencing platform using next-generation sequencing (NGS) technology for clinical use, which can provide mutation and copy number variation data. NGS was performed with paired-end library enriched with exons of 183 cancer-related genes. Normal and tumor tissue pairs of 60 colorectal adenocarcinomas were used to test feasibility. Somatic mutation and copy number alteration were analyzed. A total of 526 somatic non-synonymous sequence variations were found in 113 genes. Among these, 278 single nucleotide variations were 232 different somatic point mutations. 216 SNV were 79 known single nucleotide polymorphisms in the dbSNP. 32 indels were 28 different indel mutations. Median number of mutated gene per tumor was 4 (range 0–23). Copy number gain (>X2 fold) was found in 65 genes in 40 patients, whereas copy number loss (
Analyzing cell-free DNA (cfDNA) as a source of circulating tumor DNA is useful for diagnosing or monitoring patients with cancer. However, the concordance between cfDNA within liquid biopsy and genomic DNA (gDNA) within tumor tissue biopsy is still under debate. To evaluate the concordance in a clinical setting, we enrolled 54 patients with metastatic colorectal cancer and analyzed their plasma cfDNA, gDNA from peripheral blood mononuclear cells (PBMC), and gDNA from available matched tumor tissues using ultra-deep sequencing targeting 10 genes (38-kb size) recurrently mutated in colorectal cancer. We first established a highly reliable cut-off value using reference material. The sensitivity of detecting KRAS hotspot mutations in plasma was calculated as 100%, according to digital droplet PCR. We could selectively detect clinically important somatic alterations with a variant allele frequency as low as 0.18%. We next compared somatic mutations of the 10 genes between cfDNA and genomic DNA from tumor tissues and observed an overall 93% concordance rate between the two types of samples. Additionally, the concordance rate of patients with the time interval between liquid biopsy and tumor tissue biopsy within 6 months and no prior exposure to chemotherapy was much higher than those without. The patients with KRAS mutant fragments in plasma had poor prognosis than those without the mutant fragments (33 months vs. 63 months; p<0.05). Consequently, the profiling with our method could achieve highly concordant results and may facilitate the surveillance of the tumor status with liquid biopsy in CRC patients.
Signalling by integrin-mediated cell anchorage to extracellular matrix proteins is co-operative with other receptor-mediated signalling pathways to regulate cell adhesion, spreading, proliferation, survival, migration, differentiation and gene expression. It was observed that an anchorage-independent gastric carcinoma cell line (SNU16) became adherent on TGF-β1 (transforming growth factor β1) treatment. To understand how a signal cross-talk between integrin and TGF-β1 pathways forms the basis for TGF-β1 effects, cell adhesion and signalling activities were studied using an adherent subline (SNU16Ad, an adherent variant cell line derived from SNU16) derived from the SNU16 cells. SNU16 and SNU16Ad cells, but not integrin α5-expressing SNU16 cells, showed an increase in adhesion on extracellular matrix proteins after TGF-β1 treatment. This increase was shown to be mediated by an integrin α3 subunit, which was up-regulated in adherent SNU16Ad cells and in TGF-β1-treated SNU16 cells, compared with the parental SNU16 cells. After TGF-β1 treatment of SNU16Ad cells on fibronectin, Tyr-416 phosphorylation of c-Src was increased, but Ras-GTP loading and ERK1/ERK2 (extracellular-signal-regulated kinases 1 and 2) activity were decreased, which showed a dependence on c-Src family kinase activity. Studies on adhesion and signalling activities using pharmacological inhibitors or by transient-transfection approaches showed that inhibition of ERK1/ERK2 activity increased TGF-β1-mediated cell adhesion slightly, but not the basal cell adhesion significantly, and that c-Src family kinase activity and decrease in Ras/ERKs cascade activity were required for the TGF-β1 effects. Altogether, the present study indicates that TGF-β1 treatment causes anchorage-independent gastric carcinoma cells to adhere by an increase in integrin α3 level and a c-Src family kinase activity-dependent decrease in Ras/ERKs cascade activity.
Cancer tissues have characteristic DNA methylation profiles compared with their corresponding normal tissues that can be utilized for cancer diagnosis with liquid biopsy. Using a genome-scale DNA methylation approach, we sought to identify a panel of DNA methylation markers specific for cell-free DNA (cfDNA) from patients with colorectal cancer (CRC). By comparing DNA methylomes between CRC and normal mucosal tissues or blood leukocytes, we identified eight cancer-specific methylated loci (ADGRB1, ANKRD13, FAM123A, GLI3, PCDHG, PPP1R16B, SLIT3, and TMEM90B) and developed a five-marker panel (FAM123A, GLI3, PPP1R16B, SLIT3, and TMEM90B) that detected CRC in liquid biopsies with a high sensitivity and specificity with a droplet digital MethyLight assay. In a set of cfDNA samples from CRC patients (n = 117) and healthy volunteers (n = 60), a panel of five markers on the platform of the droplet digital MethyLight assay detected stages I–III and stage IV CRCs with sensitivities of 45.9% and 95.7%, respectively, and a specificity of 95.0%. The number of detected markers was correlated with the cancer stage, perineural invasion, lymphatic emboli, and venous invasion. Our five-marker panel with the droplet digital MethyLight assay showed a high sensitivity and specificity for the detection of CRC with cfDNA samples from patients with metastatic CRC.
Although the prognostic biomarkers associated with colorectal cancer (CRC) survival are well known, there are limited data on the association between the molecular characteristics and survival after recurrence (SAR). The purpose of this study was to assess the association between pathway mutations and SAR. Of the 516 patients with stage III or high risk stage II CRC patients treated with surgery and adjuvant chemotherapy, 87 who had distant recurrence were included in the present study. We analyzed the association between SAR and mutations of 40 genes included in the five critical pathways of CRC (WNT, P53, RTK-RAS, TGF-β, and PI3K). Mutation of genes within the WNT, P53, RTK-RAS, TGF-β, and PI3K pathways were shown in 69(79.3%), 60(69.0%), 57(65.5%), 21(24.1%), and 19(21.8%) patients, respectively. Patients with TGF-β pathway mutation were younger and had higher incidence of mucinous adenocarcinoma (MAC) histology and microsatellite instability-high. TGF-β pathway mutation (median SAR of 21.6 vs. 44.4 months, p = 0.021) and MAC (20.0 vs. 44.4 months, p = 0.003) were associated with poor SAR, and receiving curative resection after recurrence was associated with favorable SAR (Not reached vs. 23.6 months, p < 0.001). Mutations in genes within other critical pathways were not associated with SAR. When MAC was excluded as a covariate, multivariate analysis revealed TGF-β pathway mutation and curative resection after distant recurrence as an independent prognostic factor for SAR. The impact of TGF-β pathway mutations were predicted using the PROVEAN, SIFT, and PolyPhen-2. Among 25 mutations, 23(92.0%)-24(96.0%) mutations were predicted to be damaging mutation. Mutation in genes within TGF-β pathway may have negative prognostic role for SAR in CRC. Other pathway mutations were not associated with SAR.