Establishment of rapid on-site detection technology capable of concurrently detecting SARS-Cov-2 and influenza A virus is urgent to effectively control the epidemic from these two types of important viruses. Accordingly, we developed a reusable dual-channel optical fiber immunosensor (DOFIS), which utilized the evanescent wave-sensing properties and tandem detection mode of the mobile phase, effectively accelerating the detection process such that it can be completed within 10 min. It could detect the nucleoprotein of multiple influenza A viruses (H1N1, H3N2, and H7N9), as well as the spike proteins of the SARS-CoV-2 Omicron and Delta variants, and could respond to 20 TCID50 /ml SARS-CoV-2 pseudovirus and 100 TCID50 /ml influenza A (A/PR/8/H1N1), presenting lower limit of detection and wider linear range than enzyme-linked immunosorbent assay. The detection results on 26 clinical samples for SARS-CoV-2 demonstrated its specificity (100%) and sensitivity (94%), much higher than the sensitivity of commercial colloidal gold test strip (35%). Particularly, DOFIS might be reused more than 80 times, showing not only cost-saving but also potential in real-time monitoring of the pathogenic viruses. Therefore, this newly-developed DOFIS platform is low cost, simple to operate, and has broad spectrum detection capabilities for SARS-CoV-2 mutations and multiple influenza A strains. It may prove suitable for deployment as a rapid on-site screening and surveillance technique for infectious disease.
Download This Paper Open PDF in Browser Add Paper to My Library Share: Permalink Using these links will ensure access to this page indefinitely Copy URL Copy DOI
The ongoing global pandemic of SARS-CoV-2 has promoted to develop novel serological testing technologies since they can be effectively complementary to RT-PCR. Here, a new all-fiber Fresnel reflection microfluidic biosensor (FRMB) was constructed through combining all-fiber optical system, microfluidic chip, and multimode fiber bio-probe. The transmission of the incident light and the collection and transmission of Fresnel reflection light are achieved using a single-multi-mode fiber optic coupler (SMFC) without any other optical separation elements. This compact design greatly simplifies the whole system structure and improves light transmission efficiency, which makes it suitable for the label-free, sensitive, and easy-to-use point-of-care testing (POCT) of targets in nanoliter samples. Based on Fresnel reflection mechanism and immunoassay principle, both the SARS-CoV-2 IgM and IgG antibodies against the SARS-CoV-2 spike protein could be sensitively quantified in 7 min using the secondary antibodies-modified multimode fiber bio-probe. The FRMB performs in one-step, is accurate, label-free, and sensitive in situ/on-site detection of SARS-CoV-2 IgM or IgG in serum with simple dilution only. The limits of detection of SARS-CoV-2 IgM and SARS-CoV-2 IgG were 0.82 ng/mL and 0.45 ng/mL, respectively. Based on our proposed theory, the affinity constants of SARS-CoV-2 IgM or IgG antibody and their respective secondary antibodies were also determined. The FRMB can be readily extended as a universal platform for the label-free, rapid, and sensitive in situ/on-site measurement of other biomarkers and the investigation of biomolecular interaction.
An abstract is not available for this content so a preview has been provided. As you have access to this content, a full PDF is available via the ‘Save PDF’ action button.