The vacuolar chitinases of class I possess an N-terminal cysteine-rich domain homologous to hevein and chitin-binding lectins such as wheat germ agglutinin and Urtica dioica lectin. To investigate the significance of this domain for the biochemical and functional characteristics of chitinase, chimeric genes encoding the basic chitinase A of tobacco (Nicotiana tabacum) with and without this domain were constructed and constitutively expressed in transgenic Nicotiana sylvestris. The chitinases were subsequently isolated and purified to homogeneity from the transgenic plants. Chromatography on colloidal chitin revealed that only the form with the N-terminal domain, and not the one without it, had chitin-binding properties, demonstrating directly that the domain is a chitin-binding domain (CBD). Under standard assay conditions with radioactive colloidal chitin, both forms of chitinase had approximately the same catalytic activity. However, kinetic analysis demonstrated that the enzyme without CBD had a considerably lower apparent affinity for its substrate. The pH and temperature optima of the two chitinases were similar, but the form with the CBD had an approximately 3-fold higher activation energy and retained a higher activity at low pH values. Both chitinases were capable of inhibiting growth of Trichoderma viride, although the form with the CBD was about three times more effective than the one without it. Thus, the CBD is not necessary for catalytic or antifungal activity of chitinase.
Summary In receptor‐mediated transport pathways in mammalian cells, clathrin‐coated vesicle (CCV) µ‐adaptins are the main binding partners for the tyrosine sorting/internalization motif (YXXØ). We have analyzed the function of the µA‐adaptin, one of the five µ‐adaptins from Arabidopsis thaliana, by pull‐down assays and plasmon resonance measurements using its receptor‐binding domain (RBD) fused to a histidine tag. We show that this adaptin is able to bind the consensus tyrosine motif YXXØ from the pea vacuolar sorting receptor (VSR)‐PS1, as well as from the mammalian trans‐ Golgi network (TGN)38 protein. Moreover, the tyrosine residue was revealed to be crucial for binding of the complete cytoplasmic tail of VSR‐PS1 to the plant µA‐adaptin. The trans ‐Golgi localization of the µA‐adaptin strongly suggests its involvement in Golgi‐ to vacuole‐trafficking events.
Bacterial, fungal, animal, and some plant chitinases form family 18 of glycosyl hydrolases. Most plant chitinases form the family 19. While some chitinases also have lysozyme activity, animal lysozymes belong to different families. For glycosyl hydrolases, two reaction mechanisms are possible, leading to either retention or inversion of the anomeric configuration. We analyzed by HPLC the stereochemical outcome of the hydrolysis catalyzed by cucumber and bean chitinases, belonging to families 18 and 19, respectively. Cucumber chitinase used the retaining mechanism as known for bacterial chitinases and hen egg white lysozyme for which the mechanism has been determined. In contrast, bean chitinase catalyzed the hydrolysis of chitooligosaccharides with overall inversion of anomeric configuration.
Transposable elements support genome diversification, but comparison of their proliferation and genomic distribution within and among species is necessary to characterize their role in evolution. Such inferences are challenging because of potential bias with incomplete sampling of repetitive genome regions. Here, using the assembled genome as well as genome skimming datasets in Arabis alpina, we assessed the limits of current approaches inferring the biology of transposable elements. Long terminal repeat retrotransposons (LTR-RTs) identified in the assembled genome were classified into monophyletic lineages (here called tribes), including families of similar copies in Arabis along with elements from related Brassicaceae. Inference of their dynamics using divergence of LTRs in full-length copies and mismatch distribution of genetic variation among all copies congruently highlighted recent transposition bursts, although ancient proliferation events were apparent only with mismatch distribution. Similar inferences of LTR-RT dynamics based on random sequences from genome skimming were highly correlated with assembly-based estimates, supporting accurate analyses from shallow sequencing. Proportions of LTR-RT copies next to genes from both assembled genomes and genome skimming were congruent, pointing to tribes being over- or under-represented in the vicinity of genes. Finally, genome skimming at low coverage revealed accurate inferences of LTR-RT dynamics and distribution, although only the most abundant families appeared robustly analysed at 0.1X. Examining the pitfalls and benefits of approaches relying on different genomic resources, we highlight that random sequencing reads represent adequate data suitably complementing biased samples of LTR-RT copies retrieved from assembled genomes towards comprehensive surveys of the biology of transposable elements.
To prevent their being released to the cell exterior, acid hydrolases are recognized by receptors at some point in the secretory pathway and diverted towards the lytic compartment of the cell (lysosome or vacuole). In animal cells, the receptor is called the mannosyl 6-phosphate receptor (MPR) and it binds hydrolase ligands in the trans -Golgi network (TGN). These ligands are then sequestered into clathrin-coated vesicles (CCVs) because of motifs in the cytosolic tail of the MPR which interact first with monomeric adaptors (Golgi-localized, Gamma-ear-containing, ARF-binding proteins, GGAs) and then with tetrameric (adaptin) adaptor complexes. The CCVs then fuse with an early endosome, whose more acidic lumen causes the ligands to dissociate. The MPRs are then recycled back to the TGN via retromer-coated carriers. Plants have vacuolar sorting receptors (VSRs) which were originally identified in CCVs isolated from pea ( Pisum sativum L.) cotyledons. It was therefore assumed that VSRs would have an analogous function in plants to MPRs in animals. Although this dogma has enjoyed wide support over the last 20 years there are many inconsistencies. Recently, results have been published which are quite contrary to it. It now emerges that VSRs and their ligands can interact very early in the secretory pathway, and dissociate in the TGN, which, in contrast to its mammalian counterpart, has a pH of 5.5. Multivesicular endosomes in plants lack proton pump complexes and consequently have an almost neutral internal pH, which discounts them as organelles of pH-dependent receptor–ligand dissociation. These data force a critical re-evaluation of the role of CCVs at the TGN, especially considering that vacuolar cargo ligands have never been identified in them. We propose that one population of TGN-derived CCVs participate in retrograde transport of VSRs from the TGN. We also present a new model to explain how secretory and vacuolar cargo proteins are effectively separated after entering the late Golgi/TGN compartments.
The tonoplast was proposed as a default destination of membrane-bound proteins without specific targeting signals. To investigate the nature of this targeting, we created type I fusion proteins with green fluorescent protein followed by the transmembrane domain of the human lysosomal protein LAMP1. We varied the length of the transmembrane domain from 23 to either 20 or 17 amino acids by deletion within the hydrophobic domain. The resulting chimeras, called TM23, TM20, and TM17, were expressed either transiently or stably in tobacco. TM23 clearly accumulated in the plasmalemma, as confirmed by immunoelectron microscopy. In contrast, TM17 clearly was retained in the endoplasmic reticulum, and TM20 accumulated in small mobile structures. The nature of the TM20-labeled compartments was investigated by coexpression with a marker localized mainly in the Golgi apparatus, AtERD2, fused to a yellow fluorescent protein. The strict colocalization of both fluorescent proteins indicated that TM20 accumulated in the Golgi apparatus. To further test the default destination of type I membrane proteins, green fluorescent protein was fused to the 19–amino acid transmembrane domain of the plant vacuolar sorting receptor BP-80. The resulting chimera also accumulated in the Golgi instead of in post-Golgi compartments, where native BP-80 localized. Additionally, when the transmembrane domain of BP-80 was lengthened to 22 amino acids, the reporter escaped the Golgi and accumulated in the plasma membrane. Thus, the tonoplast apparently is not a favored default destination for type I membrane proteins in plants. Moreover, the target membrane where the chimera concentrates is not unique and depends at least in part on the length of the membrane-spanning domain.