A comprehensive study of unusual cases of placental pathology may provide insight into mechanisms of normal human fertilization and early embryonic development by examining the exception to the rule. A gravida three para two 39-year-old woman was monitored by ultrasound from 16 weeks of gestation for cystic placenta. A female newborn was born at 36 weeks gestation. Pathologic examination of the partially cystic placenta revealed a singleton placenta comprised of 2/3 normal placenta and 1/3 complete hydatidiform mole, largely degenerated. Immunostaining for p57 was negative in stromal cells of the molar villi. Chromogenic in-situ hybridization revealed diploidy in both normal and molar parts. A total of 16 microsatellites were studied by short tandem repeat analysis, 11 of which were informative. The analysis revealed bipaternal molar tissue of dispermic origin. The paternal monospermic contribution to the normal part was different from that in the molar part, thus resulting in tripaternal contribution to the conceptus. A chimera is a single organism composed of two or more different populations of genetically distinct cells that originated from different zygotes (tetragametic) whereas mosaic is a mixture of two cell lines in one organism originating from one zygote. The possible mechanisms leading to the formation of chimeric/mosaic placenta in our case (one of the components being complete hydatidiform mole), including twinning, fusion at an early embryonic stage and diploidization of triploids, are discussed.
Abstract A term amelic female infant was born to an apparently nonconsanguineous Arab Moslem couple. This was followed by the birth of 4 normal children. Afterwards, in 2 subsequent pregnancies, 2 amelic fetuses were diagnosed by transabdominal ultrasonography in the 18th and 12th week of gestation. Pregnancies were terminated and on autopsy both amelic fetuses had severe lung hypoplasia and aplasia of the peripheral pulmonary vessels. The first fetus also had apparently low‐set ears and micrognathia, whereas the last had hydrocephaly and left cleft lip beside the lung hypoplasia and aberrant pulmonary artery. This appears to be a new autosomal recessive malformation syndrome.
Aims—To investigate the expression of the imprinted oncofetal H19 gene in human bladder carcinoma and to examine the possibility of using it as a tumour marker, similar to other oncofetal gene products. Methods—In situ hybridisation for H19 RNA was performed on 61 first biopsies of bladder carcinoma from Hadassah Medical Centre in Jerusalem. The intensity of the reaction and the number of tumour cells expressing H19 in each biopsy were evaluated in 56 patients, excluding biopsies with carcinoma in situ. The medical files were searched for demographic data and disease free survival. Results—More than 5% of cells expressed H19 in 47 of the 56 (84%) biopsies. There was a decrease in the number of cells expressing H19 with increasing tumour grade (loss of differentiation) (p = 0.03). Disease free survival from the first biopsy to first recurrence was significantly shorter in patients with tumours having a larger fraction of H19 expressing cells, controlling for tumour grade. This was also supported by the selective analysis of tumour recurrence in patients with grade I tumours. Conclusions—It might be possible to use H19 as a prognostic tumour marker for the early recurrence of bladder cancer. In addition, for the gene therapy of bladder carcinoma that is based on the transcriptional regulatory sequences of H19, the expression of H19 in an individual biopsy could be considered a predictive tumour marker for selecting those patients who would benefit from this form of treatment.