ABSTRACT The retroviral Gag protein plays the central role in the assembly process and can form membrane-enclosed, virus-like particles in the absence of any other viral products. These particles are similar to authentic virions in density and size. Three small domains of the human immunodeficiency virus type 1 (HIV-1) Gag protein have been previously identified as being important for budding. Regions that lie outside these domains can be deleted without any effect on particle release or density. However, the regions of Gag that control the size of HIV-1 particles are less well understood. In the case of Rous sarcoma virus (RSV), the size determinant maps to the CA (capsid) and adjacent spacer sequences within Gag, but systematic mapping of the HIV Gag protein has not been reported. To locate the size determinants of HIV-1, we analyzed a large collection of Gag mutants. To our surprise, all mutants with defects in the MA (matrix), CA, and the N-terminal part of NC (nucleocapsid) sequences produced dense particles of normal size, suggesting that oncoviruses (RSV) and lentiviruses (HIV-1) have different size-controlling elements. The most important region found to be critical for determining HIV-1 particle size is the p6 sequence. Particles lacking all or small parts of p6 were uniform in size distribution but very large as measured by rate zonal gradients. Further evidence for this novel function of p6 was obtained by placing this sequence at the C terminus of RSV CA mutants that produce heterogeneously sized particles. We found that the RSV-p6 chimeras produced normally sized particles. Thus, we present evidence that the entire p6 sequence plays a role in determining the size of a retroviral particle.
The temporal sequence of expression of human globin genes during development suggests precise regulation of these genes. Recent studies have characterized a number of DNA sequences within or flanking the human beta-globin gene which are important in its regulation and several proteins which bind to these sequences have been identified. We have found two proteins which bind 5' to the human beta-globin gene. One of these proteins, which we designate BP1, binds to two sequences, one between -550 and -527 bp relative to the cap site, the other between -302 and -294 bp. A second protein, BP2, binds to sequences between -275 and -263 bp. The binding sites for both BP1 and BP2 are in two regions which function as silencers in a transient expression assay using the human erythroleukemia cell line K562. These results and others presented here suggest that BP1 may act as a repressor protein. Negative regulation seems to be an important component of tissue and developmental specific globin gene regulation.
ABSTRACT Retroviral Gag proteins, in the absence of any other viral products, induce budding and release of spherical, virus-like particles from the plasma membrane. Gag-produced particles, like those of authentic retrovirions, are not uniform in diameter but nevertheless fall within a fairly narrow distribution of sizes. For the human immunodeficiency virus type 1 (HIV-1) Gag protein, we recently reported that elements important for controlling particle size are contained within the C-terminal region of Gag, especially within the p6 sequence (L. Garnier, L. Ratner, B. Rovinski, S.-X. Cao, and J. W. Wills, J. Virol. 72:4667–4677, 1998). Deletions and substitutions throughout this sequence result in the release of very large particles. Because the size determinant could not be mapped to any one of the previously defined functions within p6, it seemed likely that its activity requires the overall proper folding of this region of Gag. This left open the possibility of the size determinant residing in a subdomain of p6, and in this study, we examined whether the late domain (the region of Gag that is critical for the virus-cell separation step) is involved in controlling particle size. We found that particles of normal size are produced when p6 is replaced with the totally unrelated late domain sequences from Rous sarcoma virus (contained in its p2b sequence) or equine infectious anemia virus (contained in p9). In addition, we found that the large particles released in the absence of p6 require the entire CA and adjacent spacer peptide sequences, whereas these internal sequences of HIV-1 Gag are not needed for budding (or proper size) when a late domain is present. Thus, it appears the requirements for budding are very different in the presence and absence of p6.