Cells of an established clonal line (RVF-SMC) derived from rat vena cava are described by light and electron microscope methods and biochemical analysis of the major proteins. The cells are flat, and they moderately elongate and form monolayers. They are characterized by prominent cables of microfilaments bundles decoratable with antibodies to actin and alpha-actinin. These bundles contain numerous densely stained bodies and are often flanked by typical rows of surface caveolae and vesicles. The cells are rich in intermediate-sized filaments of the vimentin type but do not show detectable amounts of desmin and cytokeratin filaments. Isoelectric focusing and protein chemical studies have revealed actin heterogeneity. In addition to the two cytoplasmic actins, beta and gamma, common to proliferating cells, two smooth muscle-type actins (an acidic alpha-like and a gamma-like) are found. The major (alpha-type) vascular smooth muscle actin accounts for 28% of the total cellular actin. No skeletal muscle or cardiac muscle actin has been detected. The synthesis of large amounts of actin and vimentin and the presence of at least three actins, including alpha-like actin, have also been demonstrated by in vitro translation of isolated poly(A)+ mRNAs. This is, to our knowledge, the first case of expression of smooth muscle-type actin in a permanently growing cell. We conclude that permanent cell growth and proliferation is compatible with the maintained expression of several characteristic cell features of the differentiated vascular smooth muscle cell including the formation of smooth muscle-type actin.
The mouse c locus encodes tyrosinase (monophenol monooxygenase; monophenol, L-dopa:oxygen oxidoreductase, EC 1.14.18.1), the key enzyme in melanin synthesis, which is expressed in the pigment epithelium of the retina and in melanocytes derived from the neural crest. To define regulatory regions of the gene that are important for cell type-specific expression, a deletion series of the tyrosinase 5' region was fused to a chloramphenicol acetyltransferase (CAT) reporter gene and electroporated into tyrosinase-expressing and -nonexpressing cell lines. We show that 270 base pairs 5' of the transcriptional start site is sufficient for CAT expression in a human and a mouse melanoma cell line. This 5' flanking fragment, when cloned in the context of a tyrosinase minigene construct and injected into fertilized eggs of an albino mouse strain, is sufficient for cell type-specific expression in mice. The transgenic mice were pigmented in both skin and eyes. In situ hybridization analysis shows that the 270-base-pair regulatory region contains elements sufficient for specific expression of the transgene both in the pigmented epithelial cells of the retina, which are derived from the optic cup, and in neural crest-derived melanocytes.
In cell biology, as in daily life, a common way of human thinking that is seductive, but not necessarily correct, leads to the conclusion that things that look alike are alike or even identical. This obvious dominance of expectation of homologies seems surprising in view of the numerous examples of analogies, i.e., formations of similar shapes and structures from different components and materials which biology has provided both in macroscopic and microscopic morphologies. Among the cytoskeletal filaments, striking homology of protein subunit components has been demonstrated in a diversity of cells as the predominant structural principle of formation in microfilaments and microtubules that are ubiquitous cell components throughout the eukaryotes. In contrast, it has been found with some surprise that a third category of cytoskeletal filaments is present, often in abundance, in cells of vertebrate animals. The intermediate-size filaments can be formed in different cell types by different proteins that...
Different clonal cell lines have been isolated from cultures of mammary gland epithelium of lactating cow's udder and have been grown in culture media containing high concentrations of hydrocortisone, insulin, and prolactin. These cell (BMGE+H), which grow in monolayers of typical epithelial appearance, are not tightly packed, but leave intercellular spaces spanned by desmosomal bridges. The cells contain extended arrays of cytokeratin fibrils, arranged in bundles attached to desmosomes. Gel electophoresis show that they synthesize cytokeratins similar, if not identical, to those found in bovine epidermis and udder, including two large (mol wt 58,500 and 59,000) and basic (pH range: 7-8) and two small (mol wt 45,500 and 50,000) and acidic (pH 5.32 and 5.36) components that also occur in phosphorylated forms. Two further cytokeratins of mol wts 44,000 (approximately pH 5.7) and 53,000 (pH 6.3) are detected as minor cytokeratins in some cell clones. BMGE+H cells do not produce vimentin filaments as determined by immunofluorescence microscopy and gel electrophoresis. By contrast, BMGE-H cells, which have emerged from the same original culture but have been grown without hormones added, are not only morphologically different, but also contain vimentin filaments and a different set of cytokeratins, the most striking difference being the absence of the two acidic cytokeratins of mol wt 50,000 and 45,500. Cells of the BMGE+H line are characterized by an unusual epithelial morphology and represent the first example of a nonmalignant permanent cell line in vitro that produces cytokeratin but not vimentin filaments. The results show that (a) tissue-specific patterns of intermediate filament expression can be maintained in permanent epithelial cell lines in culture, at least under certain growth conditions; (b) loss of expression of relatively large, basic cytokeratins is not an inevitable consequence of growth of epithelial cells in vitro. Our results further show that, during culturing, different cell clones with different cytoskeletal composition can emerge from the same cell population and suggest that the presence of certain hormones may have an influence on the expression of intermediate filament proteins.