Direct chemical vapor deposition growth of high quality graphene on dielectric substrates holds great promise for practical applications in electronics and optoelectronics. However, graphene growth on dielectrics always suffers from the issues of inhomogeneity and/or poor quality. Here, we first reveal that a novel precursor-modification strategy can successfully suppress the secondary nucleation of graphene to evolve ultrauniform graphene monolayer film on dielectric substrates. A mechanistic study indicates that the hydroxylation of silica substrate weakens the binding between graphene edges and substrate, thus realizing the primary nucleation-dominated growth. Field-effect transistors based on the graphene films show exceptional electrical performance with the charge carrier mobility up to 3800 cm2 V–1 s–1 in air, which is much higher than those reported results of graphene films grown on dielectrics.
Substrate utilization in a glucose-fed anaerobic sequencing batch reactor (ASBR) under different F/M ratios was investigated. Glucose added was quickly taken up by fermentation bacterial in anaerobic digestion, then partly degraded directly to volatile fatty acid (VFA, accounted for 34%-38% of COD-fed) and partly accumulated transiently in the cell as glycogen (accounted for 41%-46% of COD-fed) and degraded to VFA in the following. The bacterial accumulation capacities increased with F/M. The maximum specific storage capacities could reach as high as 116.8, 81.1 and 62.4 mg/g as F/M (COD/VSS) was controlled in 0.27, 0.20 and 0.14 respectively. VFA production rate slowed down due to glucose storage, which resulted in low VFA accumulation and guaranteed a stable operation in ASBR under high loading rate.
The development of stimuli-responsive materials with afterglow emission is highly desirable but remains a formidable challenge in a single-component material system. Herein, we propose a strategy to achieve photoactivated afterglow emission in a variety of amorphous copolymers through self-doping, endowed by the synergetic effect of self-host-induced guest sensitization and thermal-processed polymer rigidification for boosting the generation and stabilization of triplet excitons. Upon continuous ultraviolet illumination for regulating the oxygen concentration, a photoactivated afterglow showing increased lifetimes from 0.34 to 867.4 ms is realized. These afterglow emissions can be naturally or quickly deactivated to the pristine state under ambient conditions or heating treatment. Interestingly, programmable and reusable afterglow patterns, conceptual pulse-width indicators, and "excitation-time lock" Morse code are successfully established using stimuli-responsive afterglow polymers as recorded media. These findings offer an avenue to construct a single-component polymeric system with photoactivated organic afterglow features and demonstrate the superiority of stimuli-responsive materials for remarkable applications.
Escherichia coli (E. coli) is a pathogen that has generated global concern due to the public health challenges it has created. Therefore, the rapid and accurate detection of E. coli is important to public health safety. Microchips have become a popular analytical technique for detecting E. coli due to their automation, high analytical efficiency, and low analyte consumption. Therefore, this paper highlights multiple microchip-based strategies for the detection of E. coli, reviews their limitations, and provides strategies and future perspectives for analyzing E. coli..
ZnO particles were prepared from Zn nanoparticles by thermal oxidation in air, over a temperature range of 500 to 900 ºC. The microstructure of ZnO was investigated by SEM and XRD, showing that the thermal oxidation temperature affected the particle growth mechanism, morphology, and microstructure. Positron annihilation spectroscopy indicated that the thermal oxidation process has an important influence on the zinc-related vacancies and their clusters in the ZnO particles.
In recent years, metal–organic framework (MOF) materials with long persistent luminescence (LPL) have inspired extensive attention and presented various applications in security systems, information anticounterfeiting, and biological imaging fields. However, obtaining LPL materials with ultralong lifetime remains challenging. Halogen atoms, as nonmetallic elements existing in the frameworks, can not only induce the heavy-atom effect, effectively enhancing spin–orbit coupling and promoting intersystem crossing (ISC) processes, but also suppress non-radiative transition of the triplet states through the intra- and intermolecular interactions. Specifically, fluorine atoms with the strongest electronegativity may form intermolecular aggregate interlockings through halogen-bonding interactions that restrict molecular motions and vibrations, thereby improving phosphorescent lifetime. With the aforementioned considerations, two distinct types of MOFs with/without fluorine atoms (namely, Ca-MOF and 5FCa-MOF) were synthesized. Notably, by introducing fluorine atoms into MOFs, fluorine-induced intermolecular aggregate interlockings effectively enhanced the phosphorescent lifetime of 5FCa-MOF exceeding 264 ms compared to that of Ca-MOF (103.94 ms). Remarkably, both MOFs displayed bright LPL to the naked eye after removal of the irradiation source, especially 5FCa-MOF which can last for about 2 s. By introducing fluorine atoms, 5FCa-MOF exhibits greatly enhanced ISC with a rate constant up to 4.1 × 106 s–1 and suppressed non-radiative decay down to 3.73 s–1, thereby extending the LPL time. The thus obtained LPL provides potential in information encryption, security systems, optical anticounterfeiting, and so on.