Liaoning cashmere goats are the most precious genetic resources in China. The function of LAMTOR3 [late endosomal/lysosomal adaptor, mitogen-activated protein kinase (MAPK), and mammalian target of rapamycin activator 3/MAPK scaffold protein 1] gene is expressed in the skin of Liaoning cashmere goats. In situ hybridization (ISH) found that LAMTOR3 is expressed in the inner root sheath (IRS) of hair follicles. During the anagen or catagen phase, the expression of LAMTOR3 is higher in secondary hair follicles than in primary hair follicles. Expression of LAMTOR3 in skin cells treated with melatonin or insulin-like growth factor-1 (IGF-1) is lower than in untreated cells. In addition, the simultaneous treatment of fibroblast growth factor 5 and melatonin decrease the expression of LAMTOR3 in skin cells. The simultaneous treatment with melatonin and 10-5 g/L IGF-1 or 10-4 g/L IGF-1 increases the expression of LAMTOR3 gene in skin cells. If Noggin expression is decreased, then LAMTOR3 expression is increased. This hypothesis suggested that LAMTOR3 influences the character of cashmere fiber, and it may regulate the development of hair follicle and cashmere growth by inducing the MAPK signaling pathway.
Liaoning Cashmere goat is a precious genetic resource of China. To explore the relationship between POMP and cashmere growth, we analyzed the expression of POMP. POMP encodes a hudrophilic protein which is most closely related to bos. RT-PCR showed that POMP was expressed in skin, heart, liver, spleen, lung, and kidney tissues. Real-time PCR showed that the expression of POMP was more active in the secondary hair follicles than the primary hair follicles in anagen. In situ hybridization showed that POMP was obviously expressed in the Inner Root Sheath (IRS) but no expression in Outer Root. The treatment of fibroblasts with melatonin (MT), fibroblast growth factors 5 (FGF5) and insulin-like growth factors 1 (IGF-1) showed that MT/FGF5/IGF-1 much performance for inhibiting the expression of POMP; MT + FGF5 inhibited the expression of POMP; MT + IGF-1 promoted the expression of POMP. When Noggin expression is decreased by siRNA, the expression of POMP is inhibited. To sum up, POMP strongly expressed in the root sheath of hair follicles, related to the development of the primary and secondary hair follicle; In addition, by adding MT/FGF5/IGF-1 or interfering with the Noggin expression to regulate the expression of POMP, to control the growth of Liaoning Cashmere goat cashmere.
Abstract Abstract : (Background)Liaoning cashmere goat cashmere has high economic value FGF5 is an important factor regulating its growth. The role of long non-coding RNA (LncRNA) in the mammalian villus growth cycle has still not been studied in detail.(Results)This study investigated how LncRNA mediates the effects of FGF5 on the growth of Liaoning cashmere goats. We screened for LncRNA related to hair follicle development and villus growth by RNA-seq sequencing. GO and pathway analysis determined that the optimal treatment conditions for FGF5 drugs are 10 -4 g/L for 72h (F4_72h). The expression levels of CBS, CTH, keratin gene K26, KAP11.1 were studied when overexpressing and interfering with LncRNA. (Conclusions)To our knowledge, this is the first study on how LncRNA regulates villi growth by regulating target genes and keratin genes in the amino acid metabolic pathway; it is also the first to open a new research direction for studying the mechanism of FGF5 in regulating hair follicle development and villus growth.
Existing experiments have found a new intergenic lncRNA activated by melatonin, which is called lncRNA MTC. However, the regulatory mechanism of lncRNA MTC in Liaoning Cashmere goat skin fibroblasts has not been clarified. Specific knockdown of lncRNA MTC inhibits cell proliferation and increases apoptosis. iTRAQ reagent was used for relative and absolute quantification of proteins in lncRNA MTC-KD and NC groups to evaluate changes in protein expression during dermal fibroblast development following lncRNA MTC deletion. A total of 5931 proteins were found in Liaoning Cashmere goat skin fibroblasts, of which 123 were differentially expressed, including 32 up-regulated proteins and 91 down-regulated proteins. Of the 91 down-regulated proteins, 32 act mainly through related pathways (e.g., cell cycle, mitochondrial function, ribosomal structure, vesicular transport, cytoskeletal components and skin morphogenesis). LncRNA MTC facilitates the proliferation of Liaoning Cashmere goat skin fibroblasts by regulating ITGB5, TlN2, CTSS, POLG, RAP1B, CHAF1A, CDCA8 and other proteins involved in cell proliferation. The results of this study provide some candidate proteins for the in-depth investigation of the molecular mechanism of lncRNA MTC, which facilitates hair growth in cashmere goats and provides more insights into their regulatory networks and biochemical pathways.
In this study, the genes related to the Downy growth of Liaoning cashmere goats were screened for their expression with simultaneous melatonin administration, so as to investigate the effects of target genes on the proliferation of skin fibroblasts in this animal species. Genes related to the villus growth of skin fibroblasts were screened by in vitro transcriptome sequencing and verified by qPCR. In addition, gene overexpression and interference were used to study the effects of target genes on the proliferation of skin fibroblasts. Groups treated with M1_24H, M2_24H and M2_72H exhibited significant differences compared with the control group. Among them, the differentially expressed transcripts in the M2_72H group were significantly enriched in the TNF and NOD-like receptor signaling pathways, which are associated with the villus. In addition, eight differentially expressed genes were screened from the TNF and the NOD-like receptor signaling pathways. Verification by qPCR showed that the expression of TNF-α, IL-6, TNFAIP3, PYCARD and NFKBIA genes were significantly upregulated, which was consistent with the sequencing results. Melatonin treatments can significantly lead to an increase in the expression of IL-6 and TNF-α genes. Besides, melatonin treatments can affect cashmere growth in Liaoning cashmere goats by regulating several signaling pathways, including TNF, NOD-like receptor and NF-κB.