Abstract Background Tetrahydrobiopterin (BH 4 ) deficiencies comprise a group of six rare neurometabolic disorders characterized by insufficient synthesis of the monoamine neurotransmitters dopamine and serotonin due to a disturbance of BH 4 biosynthesis or recycling. Hyperphenylalaninemia (HPA) is the first diagnostic hallmark for most BH 4 deficiencies, apart from autosomal dominant guanosine triphosphate cyclohydrolase I deficiency and sepiapterin reductase deficiency. Early supplementation of neurotransmitter precursors and where appropriate, treatment of HPA results in significant improvement of motor and cognitive function. Management approaches differ across the world and therefore these guidelines have been developed aiming to harmonize and optimize patient care. Representatives of the International Working Group on Neurotransmitter related Disorders (iNTD) developed the guidelines according to the SIGN (Scottish Intercollegiate Guidelines Network) methodology by evaluating all available evidence for the diagnosis and treatment of BH 4 deficiencies. Conclusion Although the total body of evidence in the literature was mainly rated as low or very low, these consensus guidelines will help to harmonize clinical practice and to standardize and improve care for BH 4 deficient patients.
An accurate diagnosis is an integral component of patient care for children with rare genetic disease. Recent advances in sequencing, in particular whole-exome sequencing (WES), are identifying the genetic basis of disease for 25-40% of patients. The diagnostic rate is probably influenced by when in the diagnostic process WES is used. The Finding Of Rare Disease GEnes (FORGE) Canada project was a nation-wide effort to identify mutations for childhood-onset disorders using WES. Most children enrolled in the FORGE project were toward the end of the diagnostic odyssey. The two primary outcomes of FORGE were novel gene discovery and the identification of mutations in genes known to cause disease. In the latter instance, WES identified mutations in known disease genes for 105 of 362 families studied (29%), thereby informing the impact of WES in the setting of the diagnostic odyssey. Our analysis of this dataset showed that these known disease genes were not identified prior to WES enrollment for two key reasons: genetic heterogeneity associated with a clinical diagnosis and atypical presentation of known, clinically recognized diseases. What is becoming increasingly clear is that WES will be paradigm altering for patients and families with rare genetic diseases.
The inherited peripheral neuropathies (IPNs) are characterized by marked clinical and genetic heterogeneity and include relatively frequent presentations such as Charcot-Marie-Tooth disease and hereditary motor neuropathy, as well as more rare conditions where peripheral neuropathy is associated with additional features. There are over 250 genes known to cause IPN-related disorders but it is estimated that in approximately 50% of affected individuals a molecular diagnosis is not achieved. In this study, we examine the diagnostic utility of whole-exome sequencing (WES) in a cohort of 50 families with 1 or more affected individuals with a molecularly undiagnosed IPN with or without additional features. Pathogenic or likely pathogenic variants in genes known to cause IPN were identified in 24% (12/50) of the families. A further 22% (11/50) of families carried sequence variants in IPN genes in which the significance remains unclear. An additional 12% (6/50) of families had variants in novel IPN candidate genes, 3 of which have been published thus far as novel discoveries (KIF1A, TBCK, and MCM3AP). This study highlights the use of WES in the molecular diagnostic approach of highly heterogeneous disorders, such as IPNs, places it in context of other published neuropathy cohorts, while further highlighting associated benefits for discovery.
ABSTRACT: Background: Serotonin (5-HT) is a neurotransmitter synthesized in both the central nervous system (CNS) and in enterochromaffin cells of the gut. 5-HT biosynthesis is separate between the periphery and the CNS. Any observed correlations between centrally and peripherally measured 5-HT remain to be elucidated. Previous efforts have looked for a noninvasive marker of central serotonin, including serotonin in whole blood, plasma, platelets, saliva, and urine; however, results are conflicting. Aim: Finding a noninvasive marker for central serotonin turnover that can be used for diagnosis and therapeutic monitoring in patients with primary neurotransmitter deficiencies. Methods: Inclusion criterion was all children presenting with neurological symptoms whose clinical investigations included lumbar puncture (LP) for cerebrospinal fluid (CSF) collection and neurotransmitter metabolite analysis, were recruited. For central serotonin turnover, the serotonin metabolite 5-hydroxyindoleacetic acid (5HIAA) was used. Bivariate correlation between the serotonin levels in CSF (5HIAA), platelets, and saliva was calculated. Results: Twenty-six patients (aged 6 months to 15 years) with various neurologic presentations had LP for CSF collection and neurotransmitter metabolite analysis as part of their clinical care. An additional salivary and blood sample was obtained at the same time. Eighteen patients had suitable samples for quantitative measure of serotonin. There was no correlation between platelet serotonin and CSF 5HIAA levels (Pearson’s coefficient of correlation – PCC: 0.010) or between salivary serotonin and CSF 5HIAA (PCC: 0.258). There was a strong negative correlation between salivary and platelet serotonin (PCC: −0.679). Conclusion: Our findings suggest that salivary serotonin measurement is not a suitable noninvasive marker for measuring central serotonin turnover.
The Aminoacyl-tRNA Synthetases (aaRSs) are an evolutionarily ancient family of enzymes that catalyze the esterification reaction linking a transfer RNA (tRNA) with its cognate amino acid matching the anticodon triplet of the tRNA. Proper functioning of the aaRSs to create aminoacylated (or “charged”) tRNAs is required for efficient and accurate protein synthesis. Beyond their basic canonical function in protein biosynthesis, aaRSs have a surprisingly diverse array of non-canonical functions that are actively being defined. The human genome contains 37 genes that encode unique aaRS proteins. To date, 56 human genetic diseases caused by damaging variants in aaRS genes have been described: 46 are autosomal recessive biallelic disorders and 10 are autosomal dominant monoallelic disorders. Our appreciation of human diseases caused by damaging genetic variants in the aaRSs has been greatly accelerated by the advent of next-generation sequencing, with 89% of these gene discoveries made since 2010. In addition to these genetic disorders of the aaRSs, anti-synthetase syndrome (ASSD) is a rare autoimmune inflammatory myopathy that involves the production of autoantibodies that disrupt aaRS proteins. This review provides an overview of the basic biology of aaRS proteins and describes the rapidly growing list of human diseases known to be caused by genetic variants or autoimmune targeting that affect both the canonical and non-canonical functions of these essential proteins.