Pentazocine (PTZ) is a narcotic analgesic used to manage moderate to severe, acute and chronic pains. In this study, PTZ loaded Ethyl cellulose microsphere has been formulated for sustained release and improved bioavailability of PTZ. These microspheres were fabricated by oil in water emulsion solvent evaporation technique. A three factorial, three levels Box-Behnken design was applied to investigate the influence of different formulation components and process variables on the formulation response using the numeric approach through the design expert® software. All the formulations were characterized for the morphology, different physicochemical properties and the results were supported with the ANOVA analysis, three dimensional contour graphs and regression equations. The maximum percentage yield was 98.67% with 98% entrapment of PTZ. The mean particle size of the formulations ranges from 50-148μm, which directly relates to the concentration of polymer and inversely proportional to the stirring speed. SEM revealed the spherical shape of PTZ microspheres with porous structures. These are physically, chemically and thermally stable as confirmed through Fourier transform infrared spectroscopy (FTIR), powder X-ray diffraction (PXRD) and thermal gravimetric (TG) analysis respectively. The microspheres provided a sustained release of the PTZ for more than 12 hours, following zero order with fickian and non fickian diffusion. The results indicate that prepared microspheres can be a potential drug delivery system (DDS) for the delivery of PTZ in the management of pains.
The current study is aimed to fabricate doxorubicin (Dox) loaded mild temperature responsive liposomes (MTLs) by thin film hydration technique for enhanced in vitro and in vivo anticancer efficacy against hepatocellular carcinoma. The aforementioned Dox loaded MTLs were developed and optimized with extrusion and drug loading techniques. The optimized MTLs were in optimum size range (118.20 ± 2.81–187.13 ± 4.15 nm), colloidal stability (−13.27 ± 0.04 to −32.34 ± 0.15 mV), and enhanced entrapment of Dox (28.71 ± 2.01–79.24 ± 2.16). Furthermore, the optimized formulation (MTL1-E(AL)) embodied improved physicochemical stability deducted by Fourier transform infra-red (FTIR) spectroscopy and mild hyperthermia-based phase transition demonstrated from differential scanning calorimetry (DSC). An in vitro drug release study revealed mild hyperthermia assisted rapid in vitro Dox release from MTLs-E(AL) (T100% ≈ 1 h) by Korsmeyer–Peppas model based Fickian diffusion (n < 0.45). Likewise, an in vitro cytotoxicity study and lower IC50 values also symbolized mild hyperthermia (40.2 °C) based quick and improved cytotoxicity of MTL1-E(AL) in HepG2 and MCF-7 cells than Dox. The fluorescence microscopy also represented enhanced cellular internalization of MTL1-E(AL) at mild hyperthermia compared to the normothermia (37.2 °C). In addition, an in vivo animal study portrayed the safety, improved anticancer efficacy and healing of hepatocellular carcinoma (HCC) through MTL1-E(AL). In brief, the Dox loaded MTLs could be utilized as safe and effective therapeutic strategy against HCC.
An entry from the Cambridge Structural Database, the world’s repository for small molecule crystal structures. The entry contains experimental data from a crystal diffraction study. The deposited dataset for this entry is freely available from the CCDC and typically includes 3D coordinates, cell parameters, space group, experimental conditions and quality measures.
The tumor-specific targeting of chemotherapeutic agents for specific necrosis of cancer cells without affecting the normal cells poses a great challenge for researchers and scientists. Though extensive research has been carried out to investigate chemotherapy-based targeted drug delivery, the identification of the most promising strategy capable of bypassing non-specific cytotoxicity is still a major concern. Recent advancements in the arena of onco-targeted therapies have enabled safe and effective tumor-specific localization through stimuli-responsive drug delivery systems. Owing to their promising characteristic features, stimuli-responsive drug delivery platforms have revolutionized the chemotherapy-based treatments with added benefits of enhanced bioavailability and selective cytotoxicity of cancer cells compared to the conventional modalities. The insensitivity of stimuli-responsive drug delivery platforms when exposed to normal cells prevents the release of cytotoxic drugs into the normal cells and therefore alleviates the off-target events associated with chemotherapy. Contrastingly, they showed amplified sensitivity and triggered release of chemotherapeutic payload when internalized into the tumor microenvironment causing maximum cytotoxic responses and the induction of cancer cell necrosis. This review focuses on the physical stimuli-responsive drug delivery systems and chemical stimuli-responsive drug delivery systems for triggered cancer chemotherapy through active and/or passive targeting. Moreover, the review also provided a brief insight into the molecular dynamic simulations associated with stimuli-based tumor targeting.
The current study aimed to develop pH-responsive cisplatin-loaded liposomes (CDDP@PLs) via the thin film hydration method. Formulations with varied ratios of dioleoyl phosphatidylethanolamine (DOPE) to cholesteryl hemisuccinate (CHEMS) were investigated to obtain the optimal particle size, zeta potential, entrapment efficiency, in vitro release profile, and stability. The particle size of the CDDP@PLs was in the range of 153.2 ± 3.08-206.4 ± 2.26 nm, zeta potential was -17.8 ± 1.26 to -24.6 ± 1.72, and PDI displayed an acceptable size distribution. Transmission electron microscopy revealed a spherical shape with ~200 nm size. Fourier transform infrared spectroscopic analysis showed the physicochemical stability of CDDP@PLs, and differential scanning calorimetry analysis showed the loss of the crystalline nature of cisplatin in liposomes. In vitro release study of CDDP@PLs at pH 7.4 depicted the lower release rate of cisplatin (less than 40%), and at a pH of 6.5, an almost 65% release rate was achieved compared to the release rate at pH 5.5 (more than 80%) showing the tumor-specific drug release. The cytotoxicity study showed the improved cytotoxicity of CDDP@PLs compared to cisplatin solution in MDA-MB-231 and SK-OV-3 cell lines, and fluorescence microscopy also showed enhanced cellular internalization. The acute toxicity study showed the safety and biocompatibility of the developed carrier system for the potential delivery of chemotherapeutic agents. These studies suggest that CDDP@PLs could be utilized as an efficient delivery system for the enhancement of therapeutic efficacy and to minimize the side effects of chemotherapy by releasing cisplatin at the tumor site.