The increased content of isoflavonoids in dry cell suspension and nutrient medium was observed after application of electric current and AgNO3 on Genista tinctoria L. cultures in vitro. The highest content of genistin (1.7 mg g− 1 DW – dry weight) was measured in the dry cell suspension culture after 30 min elicitation of 10 V and 6 h cultivation and daidzein content (3.5 mg g− 1 DW) was measured after 60 min elicitation of 5 V and 24 h cultivation. In the case of AgNO3 elicitation, the content of genistin in dry cell suspension culture (0.5 mg g− 1 DW) was highest after 48 h of AgNO3 treatment and concentration of 5.9 × 10− 4 mol/L. The AgNO3 concentration of 5.9 × 10− 4 mol/L was also the most effective combination for daidzein production (0.9 mg g− 1 DW) after 168 h. The results of this study show that the secondary metabolites could also be released from G. tinctoria L. cells into the nutrient medium.
Accumulation of heavy metals (HMs) by ornamental plants (OPs) from contaminated agriculture soils is a unique technique that can efficiently reduce the metal load in the food chain. Amaranthus tricolor L. has attractive characteristics acquiring a higher growth rate and large biomass when grown at heavy metal contaminated soils. Site-specific detailed information is not available on the use of A. tricolor plant in metal phytoremediation from the polluted sites. The study aimed to enhance the uptake of HMs (Pb, Zn, and Cu) via amending poultry litter extract (PLE), vinasse sugarcane (VSC), and humic acid (HA) as natural mobilized organic materials compared to ethylene diamine tetraacetic acid (EDTA), as a common mobilized chemical agent by A. tricolor plant. The studied soils collected from Helwan, El-Gabal El-Asfar (Cairo Governorate), Arab El-Madabeg (Assiut Governorate), Egypt, and study have been conducted under pot condition. Our results revealed all organic materials in all studied soils, except EDTA in EL-Gabal El-Asfar soil, significantly increased the dry weight of the A. tricolor plant compared to the control treatment. The uptake of Pb and Zn significantly (p > 0.05) increased due to applying all organic materials to the studied soils. HA application caused the highest uptake as shown in Pb concentration by more than 5 times in Helwan soil and EDTA by 65% in El-Gabal El-Asfar soil while VSC increased it by 110% in El-Madabeg soil. Also, an increase in Zn concentration due to EDTA application was 58, 42, and 56% for Helwan, El-Gabal El-Asfar, and El-Madabeg soil, respectively. In all studied soils, the application of organic materials increased the remediation factor (RF) than the control. El-Madabeg soil treated with vinasse sugarcane gave the highest RF values; 6.40, 3.26, and 4.02% for Pb, Zn, and Cu, respectively, than the control. Thus, we identified A. tricolor as a successful ornamental candidate that, along with organic mobilization amendments, most efficiently develop soil health, reduce metal toxicity, and recommend remediation of heavy metal-contaminated soils. Additionally, long-term application of organic mobilization amendments and continued growth of A. tricolor under field conditions could be recommended for future directions to confirm the results.
This study analyzes the effects of acetaminophen (APAP) as a contaminant on physiological characteristics of lettuce plants (Lactuca sativa L.). Experiments were provided in an experimental greenhouse with semi-controlled conditions. The effect of different amounts of contaminant was evaluated by using regression analysis. Plants were grown in five concentrations of APAP: 0 µM, 5 µM, 50 µM, 500 µM, and 5 mM for 14 days in two variants, acute and chronic. The obtained results show that the monitored parameters were demonstrably influenced by the experimental variant. Plants are more sensitive to chronic contamination compared to acute. Significant (p < 0.05) deviation in photosynthesis and fluorescence was observed compared to the control in different variants. The highest doses of APAP reduced the intensity of photosynthesis by a maximum of more than 31% compared to the control. A reduction of 18% was observed for the fluorescence parameters. Pronounced correlation was described between chlorophyll fluorescence parameters and yield mainly under APAP conditions. The amount of chlorophyll was influenced by exposure to APAP.
There are 11 different varieties of Beta vulgaris L. that are used in the food industry, including sugar beets, beetroots, Swiss chard, and fodder beets. The typical red coloration of their tissues is caused by the indole-derived glycosides known as betalains that were analyzed in hypocotyl extracts by UV/Vis spectrophotometry to determine the content of betacyanins (betanin) and of betaxanthins (vulgaxanthin I) as constituents of the total betalain content. Fields of beet crops use to be also infested by wild beets, hybrids related to B. vulgaris subsp. maritima or B. macrocarpa Guss., which significantly decrease the quality and quantity of sugar beet yield; additionally, these plants produce betalains at an early stage. All tested B. vulgaris varieties could be distinguished from weed beets according to betacyanins, betaxanthins or total betalain content. The highest values of betacyanins were found in beetroots ‘Monorubra’ (9.69 mg/100 mL) and ‘Libero’ (8.42 mg/100 mL). Other beet varieties contained less betacyanins: Sugar beet ‘Labonita’ 0.11 mg/100 mL; Swiss chard ‘Lucullus,’ 0.09 mg/100 mL; fodder beet ‘Monro’ 0.15 mg/100 mL. In contrast with weed beets and beetroots, these varieties have a ratio of betacyanins to betaxanthins under 1.0, but the betaxanthin content was higher in beetcrops than in wild beet and can be used as an alternative to non-red varieties. Stability tests of selected varieties showed that storage at 22 °C for 6 h, or at 7 °C for 24 h, did not significantly reduce the betalain content in the samples.
In addition to its fruit, the sweet cherry (Prunus avium L.) has other parts that can be used as a source of compounds with beneficial biological activity. The content of these metabolites is affected by different inner and outer factors, often as a response to plant defense against various stresses. Leaves of two P. avium. genotypes, Kordia and Regina, grafted on the same rootstock, were analyzed from trees grown in orchards in six different phenological phases for two years. The content of several groups of phenolic compounds, lipid peroxidation, antioxidant activity of the extracts, and enzyme activity were observed via colorimetric methods on a UV/Vis spectrophotometer. The obtained data showed that the content of metabolites and other parameters in these two genotypes are dependent on the term of harvest, as well as environmental conditions, mainly temperature, but sunshine duration and rainfall also had a certain effect on the compounds in the leaves of Kordia and Regina. Even though the differences between these genotypes were not always significant, it is important to consider the right time to harvest the leaves of the sweet cherry, as their content could vary as a result of the reaction to various other conditions and could reflect the resistance of the chosen genotype.
Salt stress poses a significant challenge to global agriculture, adversely affecting crop yield and food production. The current study investigates the potential of Zinc Oxide (ZnO) nanoparticles (NPs) in mitigating salt stress in common beans. Salt-stressed bean plants were treated with varying concentrations of NPs (25 mg/L, 50 mg/L, 100 mg/L, 200 mg/L) using three different application methods: foliar application, nano priming, and soil application. Results indicated a pronounced impact of salinity stress on bean plants, evidenced by a reduction in fresh weight (24%), relative water content (27%), plant height (33%), chlorophyll content (37%), increased proline (over 100%), sodium accumulation, and antioxidant enzyme activity. Application of ZnO NPs reduced salt stress by promoting physiological growth parameters. The NPs facilitated enhanced plant growth and reduced reactive oxygen species (ROS) generation by regulating plant nutrient homeostasis and chlorophyll fluorescence activity. All the tested application methods effectively mitigate salt stress, with nano-priming emerging as the most effective approach, yielding results comparable to control plants for the tested parameters. This study provides the first evidence that ZnO NPs can effectively mitigate salt stress in bean plants, highlighting their potential to address salinity-induced growth inhibition in crops.
Crops, such as white cabbage (Brassica oleracea L. var. capitata (L.) f. alba), are often infested by herbivorous insects that consume the leaves directly or lay eggs with subsequent injury by caterpillars. The plants can produce various defensive metabolites or free radicals that repel the insects to avert further damage. To study the production and effects of these compounds, large white cabbage butterflies, Pieris brassicae and flea beetles, Phyllotreta nemorum, were captured in a cabbage field and applied to plants cultivated in the lab. After insect infestation, leaves were collected and UV/Vis spectrophotometry and HPLC used to determine the content of stress molecules (superoxide), primary metabolites (amino acids), and secondary metabolites (phenolic acids and flavonoids). The highest level of superoxide was measured in plants exposed to fifty flea beetles. These plants also manifested a higher content of phenylalanine, a substrate for the synthesis of phenolic compounds, and in activation of total phenolics and flavonoid production. The levels of specific phenolic acids and flavonoids had higher variability when the dominant increase was in the flavonoid, quercetin. The leaves after flea beetle attack also showed an increase in ascorbic acid which is an important nutrient of cabbage.
Family Fabaceae traditionally serves as food and herbal remedies source. Several plants are already used for menopausal symptoms treatment based on a presence of typical secondary metabolites, isoflavones. Beside soybean and clovers, isoflavones could be produced by other plants or in vitro cultures. This type of production can be further enhanced by elicitation that stimulates metabolites biosynthesis via stress reaction. Vanadium compounds have been already described as potential elicitors and the aim of this study was to determine an impact of NH4VO3 and VOSO4 solutions on isoflavones production in Genista tinctoria L. cell cultures. The significant increase of isoflavones content such as genistin, genistein or formononetin was measured in a nutrient medium or dry mass after NH4VO3 treatment for 24 or 48 hours. The possible transport mechanism of isoflavones was also evaluated. An incubation with different transport inhibitors prior elicitation took effect on isoflavones content in the medium. However, there was non-ended result for particular metabolites such as genistein and daidzein, where ABC or alternatively MATE proteins can participate. Possible elicitation by some inhibitors was also discussed as result of their pleiotropic effect. Despite this outcome, the determining of transport mechanism is important step for identification of specific transporter.