Transmit beampattern design is a critically important task in many fields including defense and homeland security as well as biomedical applications. Flexible transmit beampattern designs can be achieved by exploiting the waveform diversity offered by an array of sensors that transmit probing signals chosen at will. Recently proposed techniques for waveform diversity-based transmit beampattern design have focused on the optimization of the covariance matrix R of the waveforms, as optimizing a performance metric directly with respect to the waveform matrix is a more complicated operation. Given an R, the problem becomes that of determining a signal waveform matrix X whose covariance matrix is equal or close to R, and which also satisfies some practically motivated constraints. We propose a cyclic optimization algorithm for the synthesis of such an X, which (approximately) realizes a given optimal covariance matrix R under various practical constraints. A number of numerical examples are presented to demonstrate the effectiveness of the proposed algorithm.
A novel design of SOI SiGe HBTs with a buried n + thin layer and p - doping layer is proposed to improve the product of cutoff frequency and breakdown voltage, which is a vital Johnson's figure of merit (J-FOM) of the device. In this design, the n + thin layer is used to increase the cutoff frequency and the p - doping layer is adopted to maintain a high breakdown voltage. Furthermore, the thickness of n + thin layer is also studied to improve the J-FOM. As a result, for the novel SOI SiGe HBT, the J-FOM is increased from 351.5GHz-V to 482.3GHz-V, when compared with that of the traditional device. This design effectively develops the application of SOI SiGe HBTs in microwave power.
Active sonar systems involve the transmission and reception of one or more sequences, which provide a basis for extraction of the information on targets in the region of interest. The probing sequences at the transmitter and signal processing at the receiver play crucial roles in the overall system performance. We consider herein using CAN (cyclic algorithm-new) to synthesize probing sequences with good aperiodic autocorrelation properties. The performance of the CAN sequences will be compared with that of pseudo random noise (PRN) and random phase (RP) sequences, which often find uses in the active sonar systems. We will also consider two adaptive receiver designs, namely the iterative adaptive approach (IAA) and sparse learning via iterative minimization (SLIM) method. We will illustrate the performance of the algorithms via numerical examples, by comparing IAA and SLIM with the conventional matched filter (MF) method. Experimental results show that CAN, IAA and SLIM can contribute to the overall performance improvement of the active sonar systems.
Background: Radiation is a mode of treatment for many pelvic malignancies, most of which originate in the gynecologic, gastrointestinal, and genitourinary systems. However, the healthy gut is unavoidably included in the irradiation volume, resulting in undesirable results that manifest as radiation-induced diarrhea (RID), which is the most common side effect of radiation therapy and significantly affects the patients' quality of life. This study aimed to investigate the potential mechanism of diarrhea after pelvic radiotherapy in rats based on the effect of radiation on bile acid homeostasis and sodium-dependent bile acid transporter (Asbt).Methods: In this experimental study, male Sprague-Dawley rats were divided into the following groups – pelvic irradiation, cholestyramine-concurrent radiation, and control groups. The rats in the pelvic irradiation group were irradiated in the pelvic region with 2 Gy per day for five consecutive days. The total bile acid (TBA) levels in the ileum, colon, and feces were measured using automatic biochemical analyzer, and the levels of individual bile acids were evaluated by liquid chromatography-mass spectrometry/mass spectrometry (LC-MS/MS). The mRNA and protein expression of Asbt in ileum were assessed by qRT-PCR and Western blot assay. The rats in the cholestyramine-concurrent radiation group were administered with cholestyramine, a bile acid-chelating resin, and concurrent radiation for 5 days. The body weight of rats was monitored daily, and the degree of diarrhea was scored.Results: Diarrhea was observed at 2 and 3 days post-pelvic radiation. The TBA levels were significantly decreased at 4 and 5 days post-radiation in the ileum (p < .01, p < .01) and increased at 4 and 5 days post-radiation in the colon (p < .05, p < .05). The fecal excretions of TBA were significantly increased at 3, 4, and 5 days post-radiation (p < .05). The levels of individual bile acids were significantly decreased in the ileum and increased in the colon and feces, post-radiation. The mRNA and protein expression of Asbt in the ileum gradually decreased with increasing days of pelvic radiation and significantly decreased at 3 and 5 days post-radiation, respectively. Furthermore, a significant decrease in body weight was observed post-pelvic radiation, and cholestyramine administration did not reverse the weight loss. However, the incidence of RID was decreased after administration of cholestyramine.Conclusions: Bile acid malabsorption is partially responsible for RID post-pelvic radiation in rats, and the potential mechanism is related to the downregulation of the ileal Asbt.
In this paper, we present new Adaptive and Robust Techniques (ART) for microwave-based thermoacoustic tomography (TAT) and laser-based photo-acoustic tomography (PAT), and study their performances for breast cancer detection. TAT and PAT are emerging medical imaging techniques that combine the merits of high contrast due to electromagnetic or laser stimulation and high resolution offered by thermal acoustic imaging. The current image reconstruction methods used for TAT and PAT, such as the widely used Delay-and-Sum (DAS) approach, are data-independent and suffer from low resolution, high sidelobe levels, and poor interference rejection capabilities. The data-adaptive ART can have much better resolution and much better interference rejection capabilities than their data-independent counterparts. By allowing certain uncertainties, ART can be used to mitigate the amplitude and phase distortion problems encountered in TAT and PAT. Specifically, in the first step of ART, RCB is used for waveform estimation by treating the amplitude distortion with an uncertainty parameter. In the second step of ART, a simple yet effective peak searching method is used for phase distortion correction. Compared with other energy or amplitude based response intensity estimation methods, peak searching can be used to improve image quality with little additional computational costs. Moreover, since the acoustic pulse is usually bipolar: a positive peak, corresponding to the compression pulse, and a negative peak, corresponding to the rarefaction pulse, we can further enhance the image contrast in TAT or PAT by using the peak-to-peak difference as the response intensity for a focal point. The excellent performance of ART is demonstrated using both simulated and experimentally measured data.
Due to its outstanding photo-catalysis properties, low-dimensional V 2 O 5 has many important applications in lithium ion batteries, supercapacitors, electrochromic devices, photocatalysts, sensors, et al. As good photocatalysts for organic pollutants, some key issues of photocatalysts are charge generation, separation, transfer of nanocomposites under irradiation of visible light. To improve their important properties and pave the effective conductive channels for charge transfer and separation, low-dimensional V 2 O 5 /graphene nanoribbons nanocomposites were prepared . The emphasis is put on adsorption response to VOC of nanocomposite based on the QCM (quartz crystal microbalance) device. In order to investigate the mechanism of charge-generated by visible light, the photoconductivity response to visible light and 808 nm laser with low-power were studied based on interdigital electrodes of Au on flexible PET (polyethylene terephthalate) film substrate. Some good results were obtained. This illustrates that this nanocomposite can easily produce the charge-generate with visible light and 808 nm laser with low-power, avoiding the recombination of charge-generate by light. It would be good applications in remove the organic pollutants with photocatalysis effects.
Sleep deprivation can impair human health and performance. Habitual total sleep time and homeostatic sleep response to sleep deprivation are quantitative traits in humans. Genetic loci for these traits have been identified in model organisms, but none of these potential animal models have a corresponding human genotype and phenotype. We have identified a mutation in a transcriptional repressor (hDEC2-P385R) that is associated with a human short sleep phenotype. Activity profiles and sleep recordings of transgenic mice carrying this mutation showed increased vigilance time and less sleep time than control mice in a zeitgeber time- and sleep deprivation-dependent manner. These mice represent a model of human sleep homeostasis that provides an opportunity to probe the effect of sleep on human physical and mental health.
Introduction The adoptive cell transfer of tumor-infiltrating lymphocytes (TILs) has proven clinically beneficial in patients with non-small cell lung cancer refractory to checkpoint blockade immunotherapy, which has prompted interest in TIL-adoptive cell transfer. The transgenic expression of IL15 can promote the expansion, survival, and function of T cells ex vivo and in vivo and enhance their anti-tumor activity. The effect of expressing mIL15 regulated by hypoxia in the tumor microenvironment on the expansion, survival, and stem-like properties of TILs has not been explored. Methods Using TILs expanded from the tumor tissues of lung cancer patients, TILs with or without mIL15 expression (TIL-mIL15 or UN-TIL) were generated by lentiviral transduction. To reflect the advantages of mTIL15, the cells were divided into groups with IL2 (TIL-mIL15+IL2) or without IL2 (TIL-mIL15-IL2). Results Compared to UN-TIL cells, mIL15 expression had a similar capacity for promoting TIL proliferation and maintaining cell viability. Our experimental findings indicate that, compared to UN-TIL and TIL-mIL15+IL2 cells, the expression of mIL15 in TIL-mIL15-IL2 cells promoted the formation of stem-like TILs (CD8 + CD39 - CD69 - ) and led to significant decreases in the proportion and absolute number of terminally differentiated TILs (CD8 + CD39 + CD69 + ). RNA-Seq data revealed that in TIL-mIL15-IL2 cells, the expression of genes related to T cell differentiation and effector function, including PRDM1 , ID2, EOMES, IFNG, GZMB , and TNF , were significantly decreased, whereas the expression of the memory stem-like T cell marker TCF7 was significantly increased. Furthermore, compared to UN-TIL and TIL-mIL15+IL2 cells, TIL-mIL15-IL2 cells showed significantly lower expression levels of inhibitory receptors LAG3, TIGIT, and TIM3, which was consistent with the RNA-Seq results. Discussion This study demonstrates the superior persistence of TIL-mIL15-IL2 cells, which may serve as a novel treatment strategy for lung cancer patients.